
Note: We recommend that you read the online version at https://docs.sa�ng.io whenever possible.

Tech Overview
Here is short and very technical overview of the three components that make Sa�ng awesome.

Portmaster
The Portmaster is an application �rewall that enforces application pro�les on processes.

Being an application �rewall means tightly integrating with the kernel of the underlying OS (via network �lter APIs or kernel modules)
to gain needed information (associate network packets to processes) and control (block or deny network connections).

Application pro�les describe an application’s behavior in the sense of how it interacts with the Internet: Does it connect to a �xed set
of domains? Is it a peer to peer application? Does it interact with the local network? Should TLS be enforced and checked? etc.

Pro�les represent an application as experienced by the user, not as de�ned by technology - making them easy to understand and
superior to other common application classi�cation approaches. They can be either created by users themselves or - most of the
times - obtained through Stamp (explained later).

Port17
Port17 brings together several state of the art network technologies and gives them a new spicy twist � .
The goal of Port17 is to protect connection data as well as metadata from surveillance capitalism.

Adapted core concepts:

To protect your privacy, we use newest proven encryption technology: a double ratchet based protocol to provide perfect
forward and backward secrecy which can change used algorithms on demand through con�guration.
The onion-encrypted multi-hop architecture protects your identity and makes you anonymous online.
Zero roundtrip connection establishment enable blazing fast connections.
Paid community nodes are highly welcome to build a huge, capable and trustless network.

The new spicy twist � :

To protect network data and metadata as long as possible, Port17 selects exit nodes in proximity to the destination server.
Routes are calculated for maximum speed by default and use a minimum of 3 nodes. This behavior changes based on the active
security level, providing slower, but tougher routes with more nodes.
Exit node selection can be in�uenced up to application/domain pairs.
Unencrypted connections are only handled by trusted nodes run by Sa�ng. In this sense we act as a trusted anchor until all the
web is encrypted. There is no room for MITM-ing nodes.
As soon as the network has a good share of community nodes, routing will diversify routes by node ownership to further reduce
needed trust on single parties (us).
Tunnels are layer 5 and up to reduce unnecessary metadata and improve speed (similar to SOCKS proxies).
Clients always know about the full network. (will require improved method for better scaling at some point)
Authentication is decoupled from network nodes - they only know that someone is allowed to use the network, but not who.
Payment via cryptocurrencies allows unblockable payment access.
Tight integration with Portmaster ensures that no data will ever leak should a tunnel break. (unlike VPNs)

A �nal note: You may have noted that Port17 is, in some aspects, similar to the Tor Project. The key difference is, that Port17 focuses
on speed and usability, but does not claim to match Tor’s level of security. We will provide a in-depth comparison in the future.

Stamp

Sa�ng Docs

1

2

3

3

4

5

https://en.wikipedia.org/wiki/Surveillance_capitalism
https://www.torproject.org/
http://127.0.0.1:4000/

Stamp is an online community where participants “stamp” (ie. tag, categorize) domains and applications (used by Portmaster for
application pro�les) to serve as a data source for any kind of network �lter. Contributions are rewarded with reputation that gives them
more in�uence on the platform. This reputation system will be blockchain-based in the future. Stamp is a separate project that is
backed by Sa�ng.

1. Double Ratchet Algorithm ↩

2. Onion routing ↩

3. �nal network node from which the connection is made to the destination server ↩ ↩

4. Man-in-the-Middle Attack ↩

5. OSI network model ↩

User Guides

Introduction to Portmaster

Installation
In the Tech-Preview phase, we do not yet provide a full installer, as it is not yet meant to be run 24/7. When you download the installer
package, there is a small script that will start the daemon, user interface and noti�cation bar agent, if available.

Please a keep a close eye on the console output of the daemon, as it will show you what it is doing and if there are any problems.

Basics: Security Levels and Application Pro�les
The two things you should know about Portmaster when testing the software are:

1. Security Levels
There are three security levels

Dynamic
Regular mode - provides additional security measures to protect your privacy, but will also try to not be in your way to help you stay
focused. Use this mode in trusted networks.

Secure
Heightend security measures - to keep you safe in untrusted environments. It is automatically activated if you enter an unknown
network, like a café’s Wi-Fi, or if an attack is detected. Use this mode when you do not trust a network, or are temporarily in need of
more security.

Fortress
All protective mechanisms available are activated. This will most likely cut off at least some applications from the Internet, but
provides best protection technically possible. Use this mode if you think you are currently being attacked, like having clicked on a
possible virus.

These Levels also in�uence which other features are activated. Check out the settings tab in the UI to see (planned) features are set in
which security levels they should be active!

2. Application Pro�les

2

The Portmaster is currently still in Tech-Preview phase. When trying out the technology, please keep this in mind - it may be a bit
rough around the edges. Also, only the base features are implemented - the UI (and this guide) hint at many other features that
are not yet implemented.

https://en.wikipedia.org/wiki/Double_Ratchet_Algorithm
https://en.wikipedia.org/wiki/Onion_routing
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/OSI_model

Application Pro�les are how you can control which application is allowed to connect to the Internet and how. Applications are matched
by their installation path - be sure to have to path to the binary right to have a Pro�le applied (you can check the logs or the monitor tab
in the UI).

Properties
All of the properties are explained where they are appear on settings page (press the small i icon), so only the most important parts
are covered here:

Security Level: De�ne the minimum Security Level (and it’s con�gured features) that should be applied with this Pro�le.
Domain Whitelist: De�ne a domain whitelist for this Pro�le, connections to all other domains will be denied.
ConnectPorts:: De�ne a whitelist of remote TCP/UDP ports that applications are allowed to connect to.
ListenPorts:: De�ne a whitelist of local TCP/UDP ports applications may listen on. Please note that the Service Flag needs to
be set in order to allow listening at all.

Flags
Flags are an easy way to require or constraint to an application to a certain behavior.

Executing User
System: System apps must be run by system user, else deny
Admin: Admin apps must be run by user with admin privileges, else deny
User: User apps must be run by user (identi�ed by having an active sa�ng UI), else deny

Network Scope
Internet: Internet apps may connect to the Internet, if unset, all connections to the Internet are denied
LocalNet: LocalNet apps may connect to the local network (i.e. private IP address spaces), if unset, all connections to the
local network are denied

Network Destinations
Strict: Strict apps may only connect to domains that are related to themselves
Gateway: Gateway apps will connect to user-de�ned servers
Service: Service apps may accept incoming connections

Default Pro�les
Because it is infeasible to have a separate Application Pro�le for every program you directly or indirectly use, you can also de�ne a
Pro�le for whole folders. These Pro�les are called Default Pro�les and are matched on a path pre�x basis instead of an exact match
basis.

User Interface
When starting the Tech-Preview version for the �rst time, the UI should open automatically. There you can change settings, view and
edit application pro�les and monitor current connections.

Inspection
There is already the option to have Portmaster check TLS validity of connections, but this module is not currently part of the Tech-
Preview as it is not a core feature and needs more time for re�nement. If you want to check it out, you can easily compile a version
with it included by using an empty import _ "githu... on the Golang package in the main Golang �le.

Introduction to Port17

Installation

Port17 is currently still in Tech-Preview phase. When trying out the technology, please keep this in mind - it may be a bit rough
around the edges. Also, only the base features are implemented - the UI (and this guide) hint at many other features that are not
yet implemented.

In the Tech-Preview phase, we do not yet provide a full installer, as it is not yet meant to be run 24/7. When you download the installer
package, there is a small script that will start the daemon, user interface and noti�cation bar agent, if available.

Please a keep a close eye on the console output of the daemon, as it will show you what it is doing and if there are any problems.

Testing
As we do not yet provide a network for Port17 testing, you will have to create your own. This is easiest done with Docker. In the
 safing-core repo you can �nd a small guide and readme in the directory port17/testing/simple to get started.

You can then start the Portmaster with Port17 on the host and connect it to the network using the -bootstrap parameter to give the
daemon the IP address of an initial Port17 it will connect to.

If you do not feel tech savvy enough, we would recommend to wait for the alpha release, which will also feature a ready-to-use test
network with several Port17 nodes.

Docs: Core

Tinker
 tinker

The Tinker is responsible for all the crypto (cryptography, that is) in Portmaster and Port17.

As soon as the concept and implementation are �nalized, we will provide a detailed documentation here.

Docs: Portmaster

Firewall
 firewall  firewall/interception  portmaster  network  network/packet

The Application Firewall is responsible for interception network connections and analyzing them to only the ones that are in the
interest of the user - while not bugging the user about it.

Packet Interception
The interception package (a seperate one for each OS) provides the �rewall a stream of packet objects, which the �rewall can inspect
and then issue a verdict through these packet objects.

Verdicts may be:

Accept: Packet is allowed to pass.
Block: Packet is dropped, a TCP-Reset or ICMP host unreachable message is sent to the sender.
Drop: Packet is dropped silently.
PermanentAccept: This packet is allowed to pass, also tell the interception package to accept all future packets of this Link .
PermanentBlock: This packet is blocked, as well as all future packets of this Link .
PermanentDrop: This packet is dropped, as well as all future packets of this Link .
RerouteToNameserver: Reroute this packet to the local nameserver for handling.
RerouteToTunnel: Reroute this packet (and its Link) to the local Port17 entry point for further handling.

The permanent editions of verdicts were created to drastically improve performance of the portmaster, as such Links will be “handed
over” back to the OS and will not be intercepted by the Portmaster anymore. The trade-off here is that connections cannot be killed,
should the user or software change it’s mind about it later on - but this is usually not the case.

If you not have read the Tech Overview, please start there.

 firewall/interception  network/packet

https://godoc.org/github.com/Safing/safing-core/tinker
https://godoc.org/github.com/Safing/safing-core/firewall
https://godoc.org/github.com/Safing/safing-core/firewall/interception
https://godoc.org/github.com/Safing/safing-core/portmaster
https://godoc.org/github.com/Safing/safing-core/network
https://godoc.org/github.com/Safing/safing-core/network/packet
http://127.0.0.1:4000/main/tech-overview.html
https://godoc.org/github.com/Safing/safing-core/firewall/interception
https://godoc.org/github.com/Safing/safing-core/network/packet

Links
 Links represent a physical connection between a local application and a remote server. It is de�ned and identi�ed through the
IP/Port pair.

Connections
 Connections represent a logical connection between a local application and a Internet entity, identi�ed by a domain. Connections
will usually have multiple Links belonging to it.

The Portmaster
The Portmaster is the component that is handed received Connections and Links as well as any intelligence data gathered to make
a decision.

It always tries to make a decision on the Connection , which Links will automatically inherit. All these decisions and why they were
made can easily be monitored in the UI.

Security Levels
Security Levels were created to give the user an easy and quick way to adapt to different environments and better handle the
under/overblocking problem.

They are the main way to interact with the Portmaster and react to user-perceived threats.

Dynamic
This is the standard operating mode - the user is in a trusted environment and no threats have been detected. Privacy protections are
activated, but may slightly tend to underblocking.

Secure
This mode is the standard mode for untrusted environments. It is automatically activated when entering an unknown network, like a
café’s Wi-Fi, or if an attack is detected. This mode is meant for situations where more privacy is needed and may slightly tend to
overblocking.

Fortress
This is the emergency mode and should be used in highly untrusted environments, and if an attack is imminent or in progress (“You
clicked on that link, didn’t you…”). This mode will activate all available mechanisms to keep you safe and will undoubtedly overblock
and break applications. It is meant as a small bandage until an expert can verify that everything is ok (And that the link really just
showed you cat pictures).

Con�guration
How these modes behave and what features are activated can be con�gured to some extent in the Portmaster settings. Please note,
that certain features cannot be turned off in the Fortress mode in order to prevent miscon�guration and provide the same Fortress
experience across installations - ie. you know what the Fortress mode does, even if it’s not your computer you are using.

Application Pro�les
 profiles

Application Pro�les are how you can control which application is allowed to connect to the Internet and how. Applications are matched
by their installation path - be sure to have to path to the binary right to have a Pro�le applied (you can check the logs or the monitor tab
in the UI).

 network#Link

 network#Connection

 portmaster

https://godoc.org/github.com/Safing/safing-core/profiles
https://godoc.org/github.com/Safing/safing-core/network#Link
https://godoc.org/github.com/Safing/safing-core/network#Connection
https://godoc.org/github.com/Safing/safing-core/portmaster

Properties
All of the properties are explained where they are appear on settings page (press the small i icon), here we will go through them in
some more detail:

Name: Name of the application.
Description: Description of the application. Meant for when users discover applications they know nothing about in the
monitoring tool in the UI.
Security Level: De�ne the minimum Security Level (and it’s con�gured features) that should be applied with this Pro�le.
Default: De�ne this pro�le as a default Pro�le. See explanation in section Default Pro�les below.
Framework, Find, Build, Virtual, Find parent level, Merge with parent: These are some kind of Helper-Pro�les used to rematch
special applications to correct pro�les. See explanation in section Framework Pro�les below.
Domain Whitelist: De�ne a domain whitelist for this Pro�le, connections to all other domains will be denied.
ConnectPorts:: De�ne a whitelist of remote TCP/UDP ports that applications are allowed to connect to.
ListenPorts:: De�ne a whitelist of local TCP/UDP ports applications may listen on. Please note that the Service Flag needs to
be set in order to allow listening at all.

Flags
Flags are an easy way to require or constraint to an application to a certain behavior.

Executing User
System: System apps must be run by system user, else deny
Admin: Admin apps must be run by user with admin privileges, else deny
User: User apps must be run by user (identi�ed by having an active sa�ng UI), else deny

Network Scope
Internet: Internet apps may connect to the Internet, if unset, all connections to the Internet are denied
LocalNet: LocalNet apps may connect to the local network (i.e. private IP address spaces), if unset, all connections to the
local network are denied

Network Destinations
Strict: Strict apps may only connect to domains that are related to themselves
Service: Service apps may accept incoming connections
Direct Connect: These apps may directly connect to an IP address, without resolving DNS �rst. This is unusual and makes
it harder to protect privacy, but may be required for P2P applications.

Special
Gateway: Gateway apps will connect to user-de�ned servers. Currently not in use.
Browser: Browsers are special in that their behavior cannot really be de�ned. Currently not in use.

Default Pro�les
Because it is infeasible to have a separate Application Pro�le for every program you directly or indirectly use, you can also de�ne a
Pro�le for whole folders. These Pro�les are called Default Pro�les and are matched on a path pre�x basis instead of an exact match
basis.

Framework Pro�les
This system is work in progress.

Sometimes a program path may not be the real entity that is executing code. Framework Pro�les provide a means to identify the real
actor behind a program. For example, when a python script is executed, the program path will be python interpreter, but we actually
want to match against the script that is executing, not the interpreter.

Framework: De�nes that this Pro�le is a Framework pro�le. The program path will be rewritten and a new match will be tried.
Should the new path not produce a match, this pro�le will be used as a fallback.

Going down the process tree - eg. �nding the actual script of an interpreter:

Find: Regex to �nd match groups within the path.
Build: String that uses the regex match groups to build a new path. The resulting path is checked if it exists.
Virtual: Do not check if the built path exists. This is useful to construct virtual namespaces for special categories of applications,
like containerized/sandboxed applications.

 profiles#Profile

 profiles#Profile

 profiles#Profile

 profiles#Framework

https://godoc.org/github.com/Safing/safing-core/profiles#Profile
https://godoc.org/github.com/Safing/safing-core/profiles#Profile
https://godoc.org/github.com/Safing/safing-core/profiles#Profile
https://godoc.org/github.com/Safing/safing-core/profiles#Framework

Going up the process tree, using the path of the parent process to match a pro�le:

Find parent level: De�nes the number of levels to traverse the process tree up.
Merge with parent: If true, view connections of this process as a part of the identi�ed parent process.

Advanced Inspection
 firewall/inspection

In order to better secure you from attacks and ensure that connections are genuine, the Portmaster supports packet inspection.

This framework allows to easily plug in new modules that check for various kinds of network attacks or verify connections.

TLS Veri�cation
This module fully veri�es TLS connections to ensure that all programs use the best available versions, ciphers and options. Will block
outdated and vulnerable TLS connections.

Planned
These modules are planned and will be implement at some point in time.

ARP Attack Detection: detect and mititage ARP-based MITM attacks.
Portscan Detection: detect portscans to block attacking host.
Network mapper: provide a network map to users.

OS Integration
 firewall/interception  process

Windows

WinDivert

The WinDivert API and kernel driver offer a similar interface to packet interception on Windows as divert socket.

While this works well, it’s rather slow, so we are planning drastic performance improvements in the near future.

IP Helper API

The Windows API IpHlpApi.dll is used to fetch the table of current connections and get PID that belongs to the intercepted packet.

macOS
coming soon

Linux
On Linux we aim to provide two ways of OS integration:

iptables with nfqueue

Portmaster uses iptables and nfqueue to inspect and control network traf�c. The nfqueue allows packets to be handed over to user
space and return a verdict and set a mark on that connection.

 firewall/inspection/tls

 firewall/interception/windivert

 process/iphelper

 firewall/interception/nfqueue

https://godoc.org/github.com/Safing/safing-core/firewall/inspection
https://godoc.org/github.com/Safing/safing-core/firewall/interception
https://godoc.org/github.com/Safing/safing-core/process
https://godoc.org/github.com/Safing/safing-core/firewall/inspection/tls
https://godoc.org/github.com/Safing/safing-core/firewall/interception/windivert
https://godoc.org/github.com/Safing/safing-core/process/iphelper
https://godoc.org/github.com/Safing/safing-core/firewall/interception/nfqueue

Portmaster accepts all packets, but marks the whole connection to be accepted/dropped afterwards. This relieves Portmaster of
heavy network traf�c because once the fate of connection is decided, it is handed back to the kernel, never to be handed to userspace
again, which is quite costly.

Here are the rules that Portmaster injects for both IPv4 and IPv6:

Chains:

mangle: C170
mangle: C171
filter: C17

Rules in own chains:

mangle C170 -j CONNMARK --restore-mark
mangle C170 -m mark --mark 0 -j NFQUEUE --queue-num {17040|17060} --queue-bypass

mangle C171 -j CONNMARK --restore-mark
mangle C171 -m mark --mark 0 -j NFQUEUE --queue-num {17140|17160} --queue-bypass

filter C17 -m mark --mark 0 -j DROP
filter C17 -m mark --mark 1700 -j ACCEPT
filter C17 -m mark --mark 1701 -j REJECT --reject-with {icmp-host-prohibited|icmp6-adm-prohibited}
filter C17 -m mark --mark 1702 -j DROP
filter C17 -j CONNMARK --save-mark
filter C17 -m mark --mark 1710 -j ACCEPT
filter C17 -m mark --mark 1711 -j REJECT --reject-with {icmp-host-prohibited|icmp6-adm-prohibited}
filter C17 -m mark --mark 1712 -j DROP
filter C17 -m mark --mark 1717 -j ACCEPT

Rules in main chains:

mangle OUTPUT -j C170
mangle INPUT -j C171
filter OUTPUT -j C17
filter INPUT -j C17
nat OUTPUT -p udp --dport 53 -m mark --mark 1799 -j DNAT --to {127.0.0.1:53|[::1]:53}
nat OUTPUT -m mark --mark 1717 -p {tcp|udp} -j DNAT --to-destination 127.0.0.17:1117 # for Port17
nat OUTPUT -m mark --mark 1717 -j DNAT --to-destination 127.0.0.17 # for Port17

Explanation of Nfqueue Numbers:

 17040 breaks up into:

 17 is an identi�er, so that you can easily spot what belongs to Portmaster/Port17
 0 for ouput, 1 for input
 4 for IPv4, 6 for IPv6
 0 id for multi-threaded nfqueue (currently only one thread is used)

Explanation of Connmark Numbers:

1700 Accept
1701 Block
1702 Drop
1710 Permanent Accept
1711 Permanent Block
1712 Permanent Drop
1717 Reroute to Port17
1799 Reroute to nameserver (for astray DNS queries)

kernel module

We will provide an alternative to iptables by writing a kernel module to handle the needed packet interception in the future.
Depending on the performance and stability of the iptables integration this might come sooner or later.

proc/net  process/proc

https://godoc.org/github.com/Safing/safing-core/process/proc

In order to �nd out which process a packet belongs to, the proc �lesystem is �rst parsed to �nd the socket id of the intercepted packet,
then the process directory is search for the matching PID.

Docs: Port17

Security

Our Promise
We know that every complex system can be broken, Port17 is no different. We do the best we can and we think we’re doing quite good.
Nevertheless we have to set limits to what extent we can and to which lengths we will go to protect you. Here we want to clearly
communicate these limits:

Money
If you throw enough money at something long enough, it will eventually crumble. In our case we estimate how much an attack on
Port17 costs and set a limit to what extent we promise to intervene. For now this limit is set at one million EUR (Q3 2018) - we will
periodically review and update this value. Be assured that if there is a feasible solution, we will always react to a threat as fast as we
can. Let’s look at an example of how attack costs are estimated: If an attack requires 100 server to be run for 3 months and requires a
month worth of work, we can estimate that this attack would cost about 19000€ (100 * 3 * 30€ + 10000€).

Legal
We will not break any laws. Our systems are designed to collect as little personal information as possible and we continually evaluate
concepts to further decentralize our control over the Port17 network. Should we ever be forced to break the system or collect data on
you, Sa�ng (the company) will hara-kiri.

Privacy
To protect your privacy, we use a double ratchet based protocol to provide perfect forward and backward secrecy. Used algorithms can
be easily changed to address new threats and trust issues. If you want to dig deeper, check out our crypto libarary: Tinker

Your private data is perfectly safe within Port17.

Anonymity
In order to anonymize connections, they are routed through multiple network nodes, encrypting/decrypting your data at every node.
This proven method, known as onion-routing, is the state-of-the-art for anonymity networks - which has well known weaknesses.

There are three possible attacks to break this anonymity:

Rogue Nodes

The obvious threat to anonymity are nodes that are compromised or silently collude. These nodes then extract session data and if a
route is chosen that consists entirely of such nodes, the attacker can link the source to the destination.

The best way to tackle this problem is have a great community which hosts a lot of nodes. Node owners are encouraged to mark their
nodes as a group. Clients will then aim to diversify node ownership when calculating routes through the network.

At least for the �rst phase of operation, we will have to ability to moderate community nodes so that we can blacklist nodes that do not
act in the interest of the community. We are looking into options how to decentralize this control over the network.

Traf�c Analysis

One major concern with all anonymity networks is traf�c analysis. With enough network visibility, one can easily �nd out where a
connection really goes to and comes from, without even interacting with the network itself.

To provide the best possible anonymity, we studied the principles of anti traf�c analysis described by Gordon Welchman in his book
The Hut Six Story.

If you not have read the Tech Overview, please start there.

http://127.0.0.1:4000/docs/core/tinker.html
http://127.0.0.1:4000/main/tech-overview.html

Here we compare these principles with Port17.

| # | Principle | Port17 | |:–|

Port17 Architecture

The Mesh Network
Port17 employs a static - but dynamically created - mesh network. Clients may only move within existing connections and will never
trigger a new layer 4 connection to be established.

Bootstrapping
When a Port17 Node comes online for the �rst time, it needs to bootstrap itself to the network.

Before doing this the node initializes itself:

it generates its identity (a private/public key pair)
it con�gures its Bottle

To join the network, the node then downloads a couple of Bottles from https://bootstrap.safing.io/bootstrap-nodes.json .

Note: until the internal Port17 update system is in place, bootstrap.sa�ng.io will also be used for updates.

These Bottles are then used for an initial connection to the network.

When a node (or client) has been of�ine for over a day, the Bottle of the node they want to connect to may not have any valid
ephemeral keys left, so they will have to send a Seagull to fetch a new Bottle before connecting.

When �nally connected to the �rst node, the system will request that the nodes sends all Bottles in store to get the internal network
map up to date. These new Bottles are all handled as explained in the Bottle section.

Tunneling
Port17 tunneling is done on layer 5 in the network layer model. This means that layer 4 (eg. TCP, UDP, …) is terminated locally and
cannot leak any information, such as your IP address. Everything above, including TLS, is routed through the Port17 network without
mangling.

New connections are always �rst reviewed by Portmaster to determine if and how it should be handled by Port17. Connections are
then redirected to a local port, where Port17 awaits new connections. This redirection is done either by DNS or - if connecting to an IP
address directly - diverted Portmaster.

Upon accepting a new connection, Port17 matches it to the information received by Portmaster and sets possible custom options.
The port17/navigator is then asked to calculate a route which is then built and the connection is then forwarded.

Bottles (Gossip)
Nodes exchange information about themselves by passing Bottles around. These Bottles are both sent to all connected nodes
and are multicasted to the local network.

 Bottles appear in two �avours: public and local .

 public Bottles represent nodes on the public backbone. Most of them advertise a public IPv4 and/or IPv6 address. There are also
nodes, which do not propagate an IP address. Clients only use these as intermediary nodes.

If a public Bottle is received it is handled like this:

 port17/manager Bottle is received
 port17/bottle Bottle is parsed, signature and validity is checked
 port17/bottlerack Bottle is compared to stored version, continue if new or changed.
 port17/manager verify new/changed advertised IP addresses

if veri�cation failed, forward bottle as distrusted.

 port17/manager

 port17/bottle

https://godoc.org/github.com/Safing/safing-core/port17/manager
https://godoc.org/github.com/Safing/safing-core/port17/bottle

 port17/manager forward bottle to all connected nodes and clients, as well as locally

 local Bottles represent nodes in the local network.

If a local Bottle is received it is handled like this:

 port17/manager The bottle is parsed.
 port17/bottle Signature is checked. If invalid, abort.
 port17/manager If the bottle does not advertise any IP addresses,
 port17/bottlerack Bottle is compared to stored version, continue if new or changed.
 port17/manager verify new/changed advertised IP addresses

if veri�cation failed, forward bottle as distrusted.
 port17/manager if PortName changed, verify if name is unique, otherwise, abort.
 port17/manager forward bottle to all connected nodes and clients, as well as locally

Routing
Routes are entirely chosen by the clients:

Exit nodes are chosen in proximity to the destination in order to protect the connection as long as possible.
Node ownership is diversi�ed.
The fastest route with at least 3 hops is chosen.

In the future, users will have multiple options to in�uence how routes through the network are calculated:

Exclude nodes by name or group
Exclude areas by AS-Number, Country or IP range

This product includes GeoLite2 data created by MaxMind, available from http://www.maxmind.com.

Port17 Network Stack
 port17

Overview
``` A Port17 Node

         + 

OS Integration

Cross-platform

Windows

WinDivert 

If DNS is resolved for a connection, Portmaster replies with an IP address in the  127.17/16  range. This enables the Portmaster to
distinguish between domains even if they resolve to the same IP address. These connections are then rerouted to the Port17 entry
point ( 127.0.0.17:1117 ) by  NAT ing and reinjecting them.

If connecting to an IP address directly, the Portmaster directly  NAT s to  127.0.0.17:1117 .

While this works well, it’s rather slow, so we are planning drastic performance improvements in the near future.

 port17/navigator   port17/manager

 firewall/interception/windivert

http://www.maxmind.com/
https://godoc.org/github.com/Safing/safing-core/port17
https://godoc.org/github.com/Safing/safing-core/port17/navigator
https://godoc.org/github.com/Safing/safing-core/port17/manager
https://godoc.org/github.com/Safing/safing-core/firewall/interception/windivert


macOS
coming soon

Linux
On Linux we aim to provide two ways of OS integration:

iptables 

If DNS is resolved for a connection, Portmaster replies with an IP address in the  127.17/16  range. This enables the Portmaster to
distinguish between domains even if they resolve to the same IP address. These connections are then rerouted to the Port17 entry
point ( 127.0.0.17:1117 ) by marking them with  1717 .

If connecting to an IP address directly, the Portmaster marks the connection with  1717  and the iptables rules below will redirect the
connection.

Three additonal rules are added to the iptables main chains:

nat OUTPUT -m mark --mark 1717 -p {tcp|udp} -j DNAT --to-destination 127.0.0.17:1117 
nat OUTPUT -m mark --mark 1717 -j DNAT --to-destination 127.0.0.17 

kernel module

We will provide an alternative to  iptables  by writing a kernel module to handle the needed packet interception in the future.
Depending on the performance and stability of the  iptables  integration this might come sooner or later.

FAQ

What is your business model?
Check out how we business and where our money comes from.

Where is the speci�cation?
This site (docs.sa�ng.io) describes how Sa�ng works and is the authoritative documentation/speci�cation - if the source code
deviates, it’s a bug. We do not go into very �ne technical detail here because we do not want to replicate information already provided
by the great GoDoc tool. We will refer to documentation within GoDoc where appropriate.

Ask a question
Depending on your question we would ask you to use the following channels:

Usage of Sa�ng in your Environment: Sa�ng Community
Question about how Sa�ng works (ie. something is not clearly explained on this site): Raise an issue on Github

 firewall/interception/nfqueue

https://safing.io/our-values/#ethical-funding
https://docs.safing.io/
https://godoc.org/github.com/Safing/safing-core
https://safing.community/
https://godoc.org/github.com/Safing/safing-core/firewall/interception/nfqueue

