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Blockchain - an overview
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Exciting field for researchers and practitioners

Three layer architecture: programs, consensus, network

All of that works by a fascinating combination of game

theory, probabillistic consensus, cryptography, and
programming language semantics
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Vlotivation

BLOCKCHAIN

Blockchain-based Venture Capital
Fund Hacked for $60 Million

David Z. Morris n u
Jun 18,2016

News emerged Friday that The DAO, a venture capital fund

operating through a decentralized blockchain inspired by Bitcoin,
had been robbed of more than $60 million worth of Ether digital
currency, or about 1/3 of its value, through a code exploit. The
DAO, which raised more than $150 million in May, had been
intended as a showcase for the potential of Ethereum, a blockchain
platform for cloud-based financial agreements.

The nature of the hack was outlined in an open letter claiming to
be from the attacker, posted to Pastebin this morning. In part, it
reads:
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Vlotivation

Parity Multisig Hacked. Again

Yesterday, Parity Multisig Wallet was hacked again:

“This means that currently no funds can be moved out of the [ANY Parity] multi-

sig wallets”

A lot of people/companies/ICOs are using Parity-generated multisig wallets.
About $300M is frozen and (probably) lost forever.

Disclaimer: I lost little money (about $1000) but my friends lost about $300K.
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Parity Multisig Hacked. Again

Yesterday, Parity Multisig Wallet was hacked again:
https://paritytech.io/blog/security-alert.html

“This means that currently no funds can be moved out of the

sig wallets”

A lot of people/companies/ICOs are using Parity-generate
About $300M is frozen and (probably) lost forever.

Disclaimer: I lost little money (about $1000) but my frien
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A survey of attacks on Ethereum smart contracts

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli

Universita degli Studi di Cagliari, Cagliari, Italy
{atzeinicola,bart,t.cimoli}@unica.it

Abstract. Smart contracts are computer programs that can be cor-
rectly executed by a network of mutually distrusting nodes, without the
need of an external trusted authority. Since smart contracts handle and
transfer assets of considerable value, besides their correct execution it is
also crucial that their implementation is secure against attacks which aim
at stealing or tampering the assets. We study this problem in Ethereum,
the most well-known and used framework for smart contracts so far. We
analyse the security vulnerabilities of Ethereum smart contracts, pro-
viding a taxonomy of common programming pitfalls which may lead to
vulnerabilities. We show a series of attacks which exploit these vulnera-
bilities, allowing an adversary to steal money or cause other damage.

1 Introduction

The success of Bitcoin, a decentralised cryptographic currency that reached a
capitalisation of 10 billions of dollars since its launch in 2009, has raised con-
siderable interest both in industry and in academia. Industries — as well as na-
tional governments [48,55] — are attracted by the “disruptive” potential of the
blockchain, the underlying technology of cryptocurrencies. Basically, a blockchain
is an append-only data structure maintained by the nodes of a peer-to-peer net-
work. Cryptocurrencies use the blockchain as a public ledger where they record
all the transfers of currency, in order to avoid double-spending of money.

Although Bitcoin is the most paradigmatic application of blockchain tech-
nologies, there are other applications far beyond cryptocurrencies: e.g., financial
products and services, tracking the ownership of various kinds of properties, dig-
ital identity verification, voting, etc. A hot topic is how to leverage on blockchain
technologies to implement smart contracts [34,54]. Very abstractly, smart con-
tracts are agreements between mutually distrusting participants, which are au-
tomatically enforced by the consensus mechanism of the blockchain — without
relying on a trusted authority.

The most prominent framework for smart contracts is Ethereum [32], whose
capitalisation has reached 1 billion dollars since its launch in July 2015'. In
Ethereum, smart contracts are rendered as computer programs, written in a
Turing-complete language. The consensus protocol of Ethereum, which specifies
how the nodes of the peer-to-peer network extend the blockchain, has the goal

! https://coinmarketcap.com/currencies/ethereun



Smart Contracts

o Typically written in Solidity (weird JavaScript variant)

 New languages are emerging (weird Python variant)

contract SimpleStorage {
uint storedData;

function set(uint x) {
storedData = x;

}

function get() constant|returns (uint retval) {
return storedData;
}

}

« Uploaded on the blockchain as EVM bytecode

PUSH1 0x01
PUSH1 0x60
MSTORE

PUSH1 0x20
PUSH1 0x40

PUSH1 0x01

PUSH1 0x60

PUSH1 0x00

PUSH32 0x0318247CB341134f3cF49E97647227dc2D75Abe8
GAS

CALL
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External Account Contract Account Contract Account

OxdcO... OxdeZ2... OxfeO...
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Call contract
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00000000000000000000000
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Transfer
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Overview on Ethereum

External Account Contract Account Contract Account

OxdcO... OxdeZ2... OxfeO...

Balance: 2 Eth Balance: 2 Eth Balance: 3 Eth

(-

0x60606040526000357c01
0000000000000000000000

0x6060604052361561006C
5760e060020a6000350463

05b34410811461006e5780 —— _’ 0000000000000000000000
c Cal'l ContraCt 000000000000900480630e

630b5ab3d51461007c5780

6313af4035146100895780 d5e0c01461006457806327

= |
Call contract
1Eth
]

External Account
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Balance: 0 Eth ContraCt

Transfer
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Overview on Ethereum

External Account

tract Account Contract Account

OxdcO... OxfeO...

Balance: 2 Eth Balance: 3 Eth

(-

0x606060405236156100 i \§X60606040526000357c01

5760e060020a6000350 (: ll (: t t 000000000000000000000
05b34410811461006e57, — —’
630b5ab3d51461007c57 a ontrac

6313at40351461008957

P000000000000000000000
p00000000000900480630e
115e0601461006457806327

5|

Call contract

1Eth

External Account

0xad30...
Transfer Create new
Eth Balance: 0 Eth ContraCt
t

0 0
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Call flavours

this code is executed account

7\
N\ ( )
>

_\/_ code : 5 2 ) &=
/ balance storage

this storage can be
accessed during
execution

callee

— —

[ caller ] [ callee CALLCODE (inp) [ caller ] [ callee
>

Callee’s code can modify the state
of the caller!




Contract creation

Upon successful execution, the initialisation code
returns as output a code that will be (from that point
on) attached to the new account

I , new account without \
Initialisation code is

, code is created
given as argument \ eval ()

| ¢

CREATE () ') [ Ca"erl]\ [ new r

L—
g )
1 )

.

[ caller

?

while executing initialisation
code the storage of the newly
created account can be accessed
(e.g. global variables can be
initialised)
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We go for a slightly simplified
setting

(Only plain calls, simplified gas treatment, etc. )

Full treatment In...

A Semantic Framework for the Security Analysis of
Ethereum smart contracts

Ilya Grishchenko, Matteo Matffei, and Clara Schneidewind

TU Wien
{ilya.grishchenko,matteo.maffei,clara.schneidewl



EVM Semantics
Formalization

First complete formalization of EVM bytecode
semantics, in the F* proof assistant

Executable semantics by compilation into OCAML
Tested against the official Ethereum test suite
While tormalizing, we spotted various bugs and
imprecisions in previous (in)formal descriptions,

including those used In state-of-the-art static
analysers (e.g., Oyente)
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Bytecode

pc —p|

gas

PUSH 2
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Bytecode

pc —p|

gas

PUSH 2

PUSH 3
ADD

Stack

Memory

WU TR NN NN NN NN RN NN NN NN NN NN NN NN RN NN RN NN ENEERERERER RN EEy,
.
. 3
. 3

Ox6f7a9g1231.. Ox67a7b7f5f..

Balance: 7 Balance: 1

Storage Storage

0x6060604052361561006C 0x6060604052361561006C
5760€060020a6000350463 5760€060020a6000350463
05b34410811461006e5780 05b34410811461006e5780
630b5ab3d51461007c5780 630b5ab3d51461007c5780
6313af4035146100895780 6313af4035146100895780

Code Code

Storage

0x6060604052361561006c5760€060020a600035046305b34
410811461006e5780630b5ab3d51461007c57806313af4035
146100895780632b20e397146100af5780638da5ch5b14610
0c6578063bbe42771146100dd578063Taab9d391461010357




WU TR NN NN NN NN RN NN NN NN NN NN NN NN RN NN RN NN ENEERERERER RN EEy,
.
. 3
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Bytecode Stack Memory 0x6f7a9g1231.. 0x67a7b7f5f..

Balance: 7 Balance: 1

PUSH 2 :
PC —P PUSH 3 Storage Storage

1 O E 0x6060604052361561006C 0x6060604052361561006C
A D D . 5760€060020a6000350463 5760€060020a6000350463
H 05b34410811461006e5780 05b34410811461006e5780

630b5ab3d51461007c5780
6313af4035146100895780

630b5ab3d51461007c5780
6313af4035146100895780

Code Code
2 5 é [ X N J

gas

Storage

Input Active account

0x6060604052361561006c5760€060020a600035046305b34
410811461006e5780630b5ab3d51461007c57806313af4035
146100895780632b20e397146100af5780638da5ch5b14610
0c6578063bbe42771146100dd578063Taab9d391461010357

Code

0x035f8h2ga...




Execution states

Bytecode

PUSH 2
pc —»| PUSH 3
ADD

Input

n

Stack

Memory
0|2
110
2|5
3/0

Active account

0x035f8h2ga...

Ox6f7a9g1231..

0x67a7b7f5f..

Balance: 7

Balance: 1

—_——
—_—
S——

Storage

A1 610056
F o4

Code

0x035f8h2ga...

Balance: 2 Ether

Storage

A1 5 L0065 AN 1 5460050
SALOGL LA L O TN IS0 MELOIT SR04
251461 000 TR G0 X0 7 L A fSP00600 405 a8 34

Code




Execution states

Bytecode Stack Memory 0x6f7a9g1231.. 0x67a7b7f5f..
; Balance: 7 Balance: 1
PUSH 2 0|2
pc —»| PUSH 3
ADD 110
2|5
0x035f8h2ga...
3|0 Balance: 2 Ether
Input Active account

& 0x035f8h2ga...

\

machine state execution environment global state



Execution states

Balance: 7 Balance: 1
PUSH 2 0|2 | — | | &=
\’ \’
pc—»| PUSH 3
torage torage
ADD 110

2|5
0x035f8h2ga...
3|0 Balance: 2 Ether
Input Active account
& 0x035f8h2ga...

\

machine state execution environment global state

(gas, pc, m, s)

v

remaining gas memory

program counter stack



Execution states

Bytecode Stack Memory 0x6f7a9g1231.. 0x67a7b7f5f..
Balance: 7 Balance: 1
PUSH 2 0 2 .'
—
pc —»| PUSH 3 \gt =
Storage
ADD 110
Code
2|5
0x035f8h2ga...
3| o Balance: 2 Ether
Input Active account

I* 0x035f8h2ga.. Tode

\

machine state execution environment

gas pe, m, S)

(actor, input, code)

remaining gas / memory\ active account’s executed code

program counter

address
stack input to call

global state



machine state execution envi

gCLS pc, m, 8

Execution states

Bytecode Stack

pc —»

PUSH 2
PUSH 3

ADD

Input

n

Active account

0x035f8h2ga...

Ox6f7a9g1231..

0x67a7b7f5f..

Balance: 7

Balance: 1

0x035f8h2ga...

Balance: 2 Ether

AN AN A2 2 S L 00 5
G !

remaining gas / memory\

stack

program counter

(s, 0)

(actor, input, code)

4

active account’s l executed code

address

input to call

N

\

ronment

G(Cf)

global state

(b, stor, code)

account address

v

balance

N

storage

account code



Small-step semantics

Call stacks S > S
Plain call stacks Spiein 2 Spiain
Transaction environments 7., > T

EXC :: Spiain | HALT(0,d, g) :: Spiain | Spiain

(:ua [/70-) i Splaz'n ‘ €
T



Small-step semantics

exceptional halting

Call stacks
Plain call stacks
Transaction environments

S

Splain

,7-677/1)

state

(might be entered e.g. as
execution ran out of gas)

> S
= Splaz'n
> T

:: Splafm ‘ HALT(Ua da g) i Spla,z'n ‘ Splaz'n

(:ua [/70-) i Splaz'n ‘ €
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exceptional halting regular halting state
state (holds resulting global state
(might be entered e.g. as 6, return value d and
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Small-step semantics

exceptional halting regular halting state
state (holds resulting global state

(might be entered e.g. as o, return value d and

execution ran out of gas) remaining gas g)
Call stacks S > S 1= :: Splain \CHALT(U, d, g) 22 Spiain | Splain

(:ua [/70-) i Splaz'n ‘ €

Plain call stacks Spiein 2 Spiain
Transaction environments 7en, > T =

block timestamp

Small step relation

'S — 5

describes how a call stack S evolves within one step of
execution under transaction environment I’
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» Arithmetic, Logical & Comparison instructions:
ADD, MUL, LEQ, NOT, AND, OR

Control flow instructions:
JUMP pc, JUMPI pc

Stack modifying instructions:
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MSTORE, MLOAD

(Global) Storage instructions
SSTORE, SLOAD

Environment access
(global state + execution environment + transaction environment)
BALANCE, TIMESTAMP, INPUT, ADDRESS
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» Arithmetic, Logical & Comparison instructions:
ADD, MUL, LEQ, NOT, AND, OR

e Control flow instructions:
JUMP pc, JUMPI pc

« Stack modifying instructions:
PUSH x, POP

e (Local) Memory instructions
MSTORE, MLOAD

o (Global) Storage instructions
SSTORE, SLOAD

Environment access
(global state + execution environment + transaction environment)
BALANCE, TIMESTAMP, INPUT, ADDRESS

Contract Calls:
CALL



Simplified EVM bytecode

» Arithmetic, Logical & Comparison instructions:
ADD, MUL, LEQ, NOT, AND, OR

e Control flow instructions:
JUMP pc, JUMPI pc

Stack modifying instructions:
PUSH x, POP

(Local) Memory instructions
MSTORE, MLOAD

(Global) Storage instructions
SSTORE, SLOAD

Environment access
(global state + execution environment + transaction environment)
BALANCE, TIMESTAMP, INPUT, ADDRESS

Contract Calls:
CALL

Halting:
RETURN, STOP



Simple stack operations

The instruction at p.pc of
code L.code is ADD

)~ ADD
(,u.gas >=1 us=a:b:: 3) p' = puls — (a+0) ::s][pc += 1][gas —= 1]

preconditions are LE (uye,0) S = L, o) S

checked: enough gas
available + enough machine state is updated

element on the stack
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Simple stack operations

The instruction at p.pc of
code L.code is ADD

)~ ADD
(,u.gas >=1 us=a:b:: 3) p' = puls — (a+0) ::s][pc += 1][gas —= 1]

preconditions are LE (uye,0) S = L, o) S

checked: enough gas
available + enough machine state is updated

element on the stack

in case of a stack
w,, = ADD ON.S\ < 2) underflow the execution

halts exceptionally
I'E (u,t,0)::8 - EXC:: S

if the execution runs out of
(/M gas, the execution halts
I'E (u,t,0) 28 - EXC:: S exceptionally

(holds for all instructions)



Memory Access

value on memory
address a is written to

the stack
wyu,, = MLOAD —_p. gas >=1 [L.S=a:: S
v = pmla] — ' = pls - v = s][pc += 1gas —= 1

I'E (u,0,0) 8 = (W,e,0):: S



Memory Access

value on memory
address a is written to

the stack
wyu,, = MLOAD —_p. gas >=1 [L.S=a:: S
v = pmla] — ' = pls - v = s][pc += 1gas —= 1

I'E (u,0,0) 8 = (W,e,0):: S

value b is written to
memory address a

w,, = MSTORE \ ws=a:b:s t.gas >=1
p' = plm = p.mla — b]][s — s][pc += 1][gas —=1

I'E (u,0,0) 28 = (W,e,0):: S



Calling

value to be input data

£ ¢ g address in
ransferre memory to write dditional Gition:
recipient return value additional precondition:

executing account has

address

wy,, = CALL enough balance
lulfdlattec’lc M :::: :: S (.gas >=1 CJ(L.actor).b > va)
obal state:
gmoney was o{to — a(t%%a += va])(r.actor — o(r.actor)[b —= val)

transferred = (p.gas — 1,0, Az.0,¢) fresh machine state

from L.actor : t|actor — to||input — id||code — o(t0).code]
to to .. 7 _TY).. ..
/ FIZ(,u,L,J)..S—>((,u,L,J))..(,u,L,0)..S
execution environment new execution state
for executing recipient (representing the
contract is initialised execution of recipient

contract) is pushed on
callstack



The DAO

contract DAO { mapping keeping track of the
mapping (address => uint) donations; donations made by different
addresses

function donate() {

}donat ions[msg.sender] += msg.value; function for performing donations
function withdraw(){

if (donations[msg.sender] > 0) function for

{ msg.sender.call.value(donations[msg.sender])(); withdrawing

donations[msg.sender] = 0; donations
I3
I3

}



The DAO

contract DAO { mapping keeping track of the
mapping (address => uint) donations; donations made by different
addresses

function donate() {

}donat ions[msg.sender] += msg.value; function for performing donations
function withdraw(){

if (donations[msg.sender] > 0) function for

{ msg.sender.call.value(donations[msg.sender])(); withdrawing

donations[msg.sender] = 0; donations

I3

I3
} DAO contract

CALL
|




The DAO

contract DAO { mapping keeping track of the
mapping (address => uint) donations; donations made by different
addresses

function donate() {

}donat ions[msg.sender] += msg.value; function for performing donations
function withdraw(){

if (donations[msg.sender] > 0) function for

{ msg.sender.call.value(donations[msg.sender])(); withdrawing

donations[msg.sender] = 0; donations

5

s
} DAO contract Donating contract

CALL
| oy




The DAO

contract DAO { mapping keeping track of the
mapping (address => uint) donations; donations made by different
addresses

function donate() {

}donat ions[msg.sender] += msg.value; function for performing donations
function withdraw(){

if (donations[msg.sender] > 0) function for

{ msg.sender.call.value(donations[msg.sender])(); withdrawing

donations[msg.sender] = 0; donations

5

s
} DAO contract Donating contract

1 Eth (donate)
4—

CALL




The DAO

contract DAO { mapping keeping track of the
mapping (address => uint) donations; donations made by different
addresses

function donate() {

}donat ions[msg.sender] += msg.value; function for performing donations
function withdraw(){

if (donations[msg.sender] > 0) function for

{ msg.sender.call.value(donations[msg.sender])(); withdrawing

donations[msg.sender] = 0; donations

5

s
} DAO contract Donating contract

1 Eth (donate)
4—

(withdraw)

CALL




The DAO

contract DAO { | | mapping keeping track of the
mapping (address => uint) donations; donations made by different
addresses
function donate() {
donations[msg.sender] += msg.value; function for performing donations
s
function withdraw(){
if (donations[msg.sender] > 0) function for
{ msg.sender.call.value(donations[msg.sender])(); withdrawing
donations[msg.sender] = 0; donations
s
s
} DAO contract Donating contract
Oxde2... Oxde2...
1 Eth (donate)
—
(withdraw)
1 Eth

H—
CALL




The DAO

contract DAO { | | mapping keeping track of the
mapping (address => uint) donations; donations made by different
addresses

function donate() {

donations[msg.sender] += msg.value; function for performing donations

s

function withdraw(){

if (donations[msg.sender] > 0) function for

- { msg.sender.call.value(donations[msg.sender])(); withdrawing

- donations[msg.sender] = 0; donations

s
}
} DAO contract Donating contract
Oxde2... Oxde2...
1 Eth (donate)
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(withdraw)
" guard? 1 Eth
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Attack on the DAO

mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
if (donations[msg.sender] > 0)
{ msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;
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contract DAO {
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}
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donations[msg.sender] = 0;
+
5

DAO contract

Oxde2...
=— guard?
CALL
invalidate guard
<

Attacker contract

Oxfc2...

CALL




Attack on the DAO

contract DAO {
mapping (address => uint) donations;

function donate() {
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}

function withdraw(){
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Attack on the DAO

mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;
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function withdraw()<{
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Attack on the DAO

mapping (address => uint) donations;

function donate() {
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Attack on the DAO

mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
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donations[msg.sender] = 0;
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Attack on the DAO

mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
if (donations[msg.sender] > 0)
{ msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

¥
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+—
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S0, what did go wrong here?



Common approch
from the literature

* “the guard should be invalidated betore performing
the call”

e Syntactic and program specific characterization

* What is the underlying semantic security property”



Call integrity

e Reason for the DAQO:
untrusted contracts could influence the call flow of
the contract (Call integrity)




Call integrity

e Reason for the DAQO:
untrusted contracts could influence the call flow of
the contract (Call integrity)

DAO contract

OxdeZ2... untrusted address

guard? :

XXX

CALL .

-
invalidate guard \




e Reaso
untrust

Call integrity

n for the DAO:

the co

DAO contract

OxdeZ2...

guard?

CALL

invalidate guard

untrusted address

XXX

X

DAO contract

ed contracts could influence the call flow of
ntract (Call integrity)

Oxde2... untrusted address
—
guard?
CALL S E—— Yyy
invalidate guard




Call integrity

Reason for the DAQO:
untrusted contracts could influence the call flow of
the contract (Call integrity)

DAO contract DAO contract
Oxde2... untrusted address Oxde2... untrusted address
_
guard? A guard?
CALL XXX CALL h— yyy
invalidate guard invalidate guard
7T 71'/ *

I'E s, :: S A final (t.) N TES =8 — t'.:: 8" A final (t'.) | Note: we annotate
‘-—~--.____________> 4____________————”' / execution states
— T lealls,= T calls, with the contract

Differing only in codes of untrusted addresses ~ ~— - (pair of address +

=> ¢ is called in the same way c should produce the same code) they are

calls executing:

Hyper-Property S(L.actor, L.code)




Single-entrancy

* Single-entrancy for c:
"After being re-entered, contract ¢ should perform
Nno more calls”

DAO contract Attacker contract

Oxde2... Oxfc2...

guard?

CALL
invalidate guard CALL

; :
-3s", . Tk s.:: 8 %*[S,C// J::{s’c]:: S+ —|— S
t

Reachability property



Single-entrancy

* Single-entrancy for c:
"After being re-entered, contract ¢ should perform
Nno more calls”

DAO contract Attacker contract

OxdeZ2... Oxfc2...

(withdraw)
4—

guard?
CALL
invalidate guard CALL

-3s", /' T'Fs.:: S —>*[S,C// J::{s’c]:: S’ + —|— 0 S
t

Reachability property



Single-entrancy

* Single-entrancy for c:
"After being re-entered, contract ¢ should perform
Nno more calls”

DAO contract Attacker contract

OxdeZ2... Oxfc2...

(withdraw)
4—

guard?
CALL 1Eth—b

invalidate guard CALL

-3s", /' T'Fs.:: S —>*[S,C// ]ZI[S/C]ZZ S’ + —|— 0 S
t

Reachability property



Single-entrancy

* Single-entrancy for c:
"After being re-entered, contract ¢ should perform
Nno more calls”

DAO contract Attacker contract
OxdeZ2... Oxfc2...
/ .
Se (withdraw)
guard? -,
CALL
invalidate guard CALL
, ..................................
-3s", /' T'Fs.:: S —>*[S,C// ]::[S/C]:: S’ + —|— S
t

Reachability property



Single-entrancy

* Single-entrancy for c:
"After being re-entered, contract ¢ should perform
Nno more calls”

DAO contract Attacker contract
OxdeZ2... Oxfc2...
/ .
Se (withdraw)
uard? /!
J 1 Eth L[S 7
CALL | \ C
invalidate guard CALL

-3s", /' T'Fs.:: S —>*[S,C// ]ZI[S/C]ZZ S’ + —|— 0 S
t

Reachability property



Proof technique for call integrity

Single-entrancy

_J

“contract should not

~

depend on return value of

calls to untrusted
contracts”

_J

~

“contract should not
depend on untrusted
contract’s code (that it
accesses directly)”

_/

v

Call Integrity




Proof technique for call integrity

Single-entrancy

R R
“contract should not
depend on return value of
calls to untrusted
contracts”
), ),

~

“contract should not
depend on untrusted
contract’s code (that it
accesses directly)”

_/

v

Call Integrity |

Hyper-Property

Hard to verify




Proof technique for call integrity

Reachability Property

Value-Dependency Properties

Single-entrancy

R R
“contract should not
depend on return value of
calls to untrusted
contracts”
), ),

“contract should not
depend on untrusted

~

contract’s code (that it

accesses directly)”

v

Call Integrity |

Hyper-Property

Hard to verify

_/



Proof technique for call integrity

Reachability Property Value-Dependency Properties
) ) )
r r “contract should not r “contract should not
S . '. t depend on return value of depend on untrusted
]ng e-en ranCy calls to untrusted contract’s code (that it

sennsans directly)”

_

Provable by static analysis: EtherTrust

_/

Call Integrity |

Hyper-Property




Atomicity

* |nconsistencies due to unhandled gas exceptions

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){

msg.sender.call.value(donations[msg.senderl) ();
donations[msg.sender] = 0;

}
}



Atomicity

* |nconsistencies due to unhandled gas exceptions

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.senderl) ();
donations[msg.sender] = 0;

¥
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Atomicity
* |nconsistencies due to unhandled gas exceptions

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();

~ donations[msg.sender] = 0;
¥
} Oxde2...

*
.
.
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.
.
.
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.
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.
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S CALL : |

» update representation |
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Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

¥

¥

DAO contract

— CALL

S update representation




Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

¥

¥

DAO contract
OxdeZ2... Oxfc2...

D CALL
— .
s = update representation

Oxfc2... -> 0 Eth




Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){

msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

I3

I3

DAO contract

OxdeZ2...

Oxfc2...

Q 1 Eth (donate)
—— e

— CALL

S—— update representation

Oxfc2... -> 1 Eth




Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

Oxfc2...

}
}
DAO contract
Oxde2...
Q 1 Eth (donate)
-—
l : (withdraw)
> CALL
— update representation
Oxfc2... -> 1 Eth
B




Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

Oxfc2...

}
}
DAO contract
Oxde2...
Q 1 Eth (donate)
-—
l : (withdraw)
> CALL
— update representation
Oxfc2... -> 1 Eth
in
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Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

}
}
DAO contract
OxdeZ2... Oxfc2...
1 Eth (donate) |
]
l 5 (withdraw)
G—————
1 Eth
O CALL
= update representation
Oxfc2... -> 1 Eth
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Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

}
}
DAO contract
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Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
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}
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DAO contract
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Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

}
}
DAO contract
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Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

}
}
DAO contract
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o
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Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

}
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DAO contract
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contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;
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Contract inconsistencies

contract DAO {
mapping (address => uint) donations;

function donate() {
donations[msg.sender] += msg.value;

}

function withdraw(){
msg.sender.call.value(donations[msg.sender])();
donations[msg.sender] = 0;

}
I3
DAO contract
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Q 1 Eth (donate)
—
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- CALL —@—»
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Atomicity

* Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

DAO contract DAO contract
/

S .0 Oxde2... Oxfc2...

t.o
= T,
1

(withdraw)
0] — AL
update representation S update representation
Oxfc2... -> 0 Eth ,
(|
] e
-

Initial states only
differing in gas

/ +—
I'Es.euS—="s.uSAfinal(s YN T Et.::S ="t 8N final(t

s o=toVso=s.ocVto=t.o

Oxde2... Oxfc2...




Atomicity

* Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

DAO contract

S .0 Oxde2... Oxfc2...

Q : 1 Eth |
P2

(withdraw)
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Atomicity

* Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

DAO contract
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Atomicity

* Reason for inconsistency: the (effects of) a
contract's execution should not depend on the
amount of gas given for execution

DAO contract
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(withdraw)

update representation

5 [ () 4

t'o
, (withdraw)
- CALL
=— update representation @
Oxfc2... -> 1 Eth

DAO contract

Oxde2... Oxfc2...

Initial states only . so=to ~ S=— ¢ 16t

differing in gas

/ +—
:: S —* s SAfinal(s') AN T

::: S —*tl 2 SA final(t

s o=toVso=s.ocVto=t.o



Atomicity

* Reason for inconsistency: the (effects of) a
contract's execution should not depend on the
amount of gas given for execution
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* Reason for inconsistency: the (effects of) a
contract's execution should not depend on the
amount of gas given for execution
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Atomicity

* Reason for inconsistency: the (effects of) a
contract's execution should not depend on the
amount of gas given for execution
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* Reason for inconsistency: the (effects of) a
contract's execution should not depend on the
amount of gas given for execution
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Atomicity

* Reason for inconsistency: the (effects of) a
contract's execution should not depend on the
amount of gas given for execution
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Atomicity

* Reason for inconsistency: the (effects of) a
contract's execution should not depend on the
amount of gas given for execution
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Atomicity

* Reason for inconsistency: the (effects of) a
contract's execution should not depend on the
amount of gas given for execution
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How can all of that be
checked automatically?



Outline

Introduction to Ethereum
Semantics of EVM bytecode

Static Analysis of EVM bytecode



Ovyente[1]

* Tool for finding common smart contract bugs in
EVM bytecode
(re-entrancy, uncaught exceptions, etc.)

e.g. can path
condition before a

CALL be satisfied -
again? gl kely
0x606060405234 u g gy
1561000c57febb
604051 68208%61 BO un d ed /
085b8339810160 . P?
40528080519060 _>
20019091905050 Sym bOI IC .
5b336000600061 1
01000a81548173 exeCUtlon \
iiiiniininiiniinii .
. . . . likely
symbolic execution feasible symbolic :
traces execution traces sale

 Evaluated on ~19000 real world contracts
(low false positive rate: 6,4%)

[1] Luu, Loi, et al. "Making smart contracts smarter." Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016.
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Figure 12: Number of buggy contracts per each security problem

reported by OYENTE.

Cons
* Only works for pre-defined properties

* Produces false positives + talse negatives

« Based on flawed semantics: (S| (o) — <S’,

global state is assumed to be monotonically
updated (never reverted) during execution
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+ Only works for pre-defined properties
* Produces false positives + false negatives

« Based on flawed semantics: (S| (o) — <S’,

global state is assumed to be monotonically
updated (never reverted) during execution



KEVM[2]

* Implementation of EVM bytecode semantics is in
the K framework (rewrite-based executable

semantic framework)

* Analysis tools automatically derived from the
semantics:

* Semantic Debugger

* Program Veritier (for reachability claims)

[2] Hildenbrandt, Everett, et al. Kevm: A complete semantics of the ethereum virtual machine. CSF 2018.



KeEVM

- Pros

 Based on fully fledged (and tested) semantics of EVM
bytecode

* Allows for Hoare-style-like reasoning

- Cons

* Analysis tool requires the user to specify invariants
(semi-automated)

 No domain-specific over-approximations (e.g. for
calling unknown contracts)



KeEVM

- Pros Provably sound

 Based on fully fledged (and tested) semantics of EVM
bytecode

* Allows for Hoare-style-like reasoning

- Cons

* Analysis tool requires the user to specify invariants
(semi-automated)

 No domain-specific over-approximations (e.g. for
calling unknown contracts)



KeEVM

- Pros Provably sound

- Cons

 Based on fully fledged (and tested) semantics of EVM
bytecode

* Allows for Hoare-style-like reasoning

Only Semi-automated :"

* Analysis tool requires the user to specify invariants
(semi-automated)

 No domain-specific over-approximations (e.g. for
calling unknown contracts)



- Cons

KeEVM

- Pros Sound by construction

 Based on fully fledged (and tested) semantics of EVM
bytecode

* Allows for Hoare-style-like reasoning

Only Semi-automated :"

* Analysis tool requires the user to specify invariants
(semi-automated)

 No domain-specific over-approximations (e.g. for
calling unknown contracts)



SEecurity[a]

Static smart contract analyser for EVM bytecode
based on ‘semantic fact checking’

0x606060405234 :
1561000c57fe5b Stackl partial
6040516020806 1 — i '
085b8339810160 Decompllatlon ac eSS_ evaluation enCOdmg )
40528080519060 »| representation > CFG »| semantic facts
20019091905050 ] (Control flow
5b336000600061 in SSA form
0100081548173 and data
liiiiiiiiiiiniiii d

ependencies)

matched inference rules

violation/satisfaction / (in stratified
of security property \ datalog / datalog)

solver

violation/
satisfaction
patterns

unknown
not matched

e Evaluated on ~25000 real world contracts

[3] Tsankov, Petar, et al. "Securify: Practical Security Analysis of Smart Contracts.” arXiv preprint arXiv:1806.01143 (2018).
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Pros Fully Automated N !§ I§§ l§§ !@%
-20% § §
» Fast + scalable e
* Shows good accuracy thanks to classification
into (confirmed) violations and compliances
Cons No soundness proof

* Decompilation is not guaranteed to succeed

* No soundness proof (neither for the dependency
analysis nor for the security patterns)



/EUS[4]

o Static analyser for Solidity code

Intermediate
aong - KTranslation | Intermediate P lanauage | Translation
adnd g > > guag »(LLVM Bitcode
;:Ionahons; |anguage Proper‘ty with
specific assertions
program

transformation
and assertions

Seahorn

e Evaluated on ~22500 real-world contracts

[4] Kalra, Sukrit, et al. "Zeus: Analyzing safety of smart contracts.”" NDSS, 2018.
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e Fast + scalable oA
Time (min)

(d) Verification time in minutes.

Cons

* Only works on Solidity code (not on bytecode)
o Only works for pre-defined properties

* Does not give soundness guarantees (transformations
are not semantics preserving + security invariants are
not proven sound)

e Based (as Oyente) on flawed semantics
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Pros Fully Automateq S e
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Oyente —»—
 [Fast + scalable Al omme = |
Time (min)
Cons (d) Verification time in minutes.

* Only works on Solidity code (not on bytecodd ™

No soundness

» Only works for pre-defined properties _ Starantees

* Does not give soundness guarantees (transformations
are not semantics preserving + security invariants are
not proven sound)

e Based (as Oyente) on flawed semantics



Ether lrust

https://www.netidee.at/ethertrust

e First provably sound static analyzer for Ethereum smart
contracts (i.e., it returns security guarantees)

e previous ones focus on bug finding
e Qutperforms the competitors in precision and performance

 Reachability analysis: suffices to check various interesting
security properties

Specific application domain abstractions: T for
unknown values, a for address of running contract,

abstract memory representation, and most notably
calls to unknown contracts
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Static analysis for Ethereum
smart contracts

* Approach: abstract the EVM small-step semantics
iInto Horn clauses that can be analysed using Z3

derivable (using first IT is a coarser
order logics) abstraction than IIs’
s 28 —* S’ + 48

C>X<
v
A U I, (H o (> 1y

| \ \

set of horn clauses over set of predicate set of predicate
approximating the instances describing the instances describing the
semantics of the code of execution state s call stack S’

contract c*



State abstraction

MStatepc ((size, sa), mem, cd)

/!

stack, represented as
(unbounded) array + size call depth

predicate parametrised

by pc (to minimise recursive memory, represented as array
horn clauses)

* Similar predicates for
* global state

e execution environment
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- Horn clauses are generated according to the opcodes
located at each pc

- Example: Machine state rule for pc with opcode ADD
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HOorn clause encoding

- Execution steps modelled as Horn clauses

- Horn clauses are generated according to the opcodes
located at each pc

- Example: Machine state rule for pc with opcode ADD

MState .((size, sa), aw, cd) MState,.((size, sa), mem, cd)
A Size >= 2 <——— simple range check = EXC(Cd)

— L <«—___ as we do not track gas
A X Sa[SIZG 1] explicitly, we assume the

AY = sa[size-2] execution to stop in every

step as it runs out of gas
= MState,..1((size-1, sa[size-2 — x+y]), mem, cd)

/ T~

state predicate for

next pc is implied stack is updated



HOorn clause encoding

- Execution steps modelled as Horn clauses

- Horn clauses are generated according to the opcodes
located at each pc

- Example: Machine state rule for p xde ADD

MState,.((size, sa), aw, cd)
A Size >= 2 <—sip~'“”"
A X = sa[size-1]
A 'Y = sal[size-2]
= MState,..1((size-1,

/

state predicate for
next pc is implied

as we do not track gas
explicitly, we assume the
execution to stop in every
step as it runs out of gas

“stack is updated
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concretely known address of the potential values
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analysis



Abstract Domain

MStatepc ((Sizea, ma, Cd)

Common technique
from abstract
interpretation

Abstract domain f) — 7, { &} g {_|_

O\

represents represents the represents all
concretely known address of the potential values
values account under

analysis
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contract is called
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* Sometimes we still want to be precise:

ADDRESS, BALANCE
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Why using an abstract
domain®

* There are a lot of values that we do not know statically:

onty known when (TIMESTAMP), PUSH 2, ADD 2 - -

contract is called
on blockchain

* Sometimes we still want to be precise:

a&r:ly cl;nn(?c\;vanct takes address as argument
QA\DDRESS) BALANCE and returns the balance of

is published on .
blockchain k ) the corresponding account

N

always results in pushing the balance

of the executing account n -




Abstracting calls - Intuition

* For analysing a specific contract all its executions
need to be approximated

tight approximation for coarse approximation for
call depth 0 call depthy > 0
DAO contract DAO contract DAO contract
Oxde2... Oxde2... Oxde2...
j—? <7
guard? guard? coo guard?
CALL CALL CALL
invalidate guard invalidate guard invalidate guard
X 2n

Attacker contract
Oxfc2...




Abstract semantics - Call
rule




Abstract semantics - Call rule

preconditions are checked: enough elements on the stack, enough gas

MState,. ((size, sa), ma, cd) A size

> 3 A va = sa|size — 2

/\zfa,gl;

AGState,. (o, IA), sta, cd) N @d’ > cdj

= MStateg ([(O, )\:U.T)],

A0} cd')

contract might be reentered execution starts at pc 0 in fresh
her call machine state:

at an arbitrarily hig
depth

empty stack +

memory

initialised to all zeros

MState,. ((size, sa), ma, cd) A size > 3 A va = sa[size — 2] A va < b
AGState,. (a, b, sta. cd) A\ ed > cd = ExEnv @ cd')

when reentering the active account at the the input to the reentering
the actor call is unknown

point of calling is (still)



Abstract semantics - Call rules

A

MState,. ((size, sa), ma, cd) A size > 3 A va = sa|size — 2] A va < b

)

AGStatepc (o, b,@ cd) A c¢d > cd = GStateg (a .', d)

the global storage of the the balance might be
active account is preserved arbitrarily changed

MState,. ((size, sa), ma, cd) A size > 3 A va = sa|size — 2] A GState,c (a b, sta, cd)

A

Ava < b A GState,. (a,b*, sta”, cd) A (a + oz)/\ cd > cd = GStateqg (a, T,|[T], cd)

all addresses different from the actor can have
arbitrary storage (all positions mapped to T)

This is actually an artefact: the storage of other accounts but the
active account cannot be accessed anyways given that only plain calls
are executed




Checking for single-
entrancy

* How to check for single-entrancy now?

e Simple example;

contract Bob {
bool sent = false;

function ping(address c) {
if (!'sent){
c.call.value(2)();
sent = true; }
}
}
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Checking for single-

entrancy

* How to check for single-entrancy now?

e Simple example;

contract Bob {

if (!sent){

bool sent = false;

Transfers 2 wei to the
address given as argument

function ping(address Cf‘:;”””’ff”ffﬂffff

c.call.value(2)();

sent = true;

}
}

}

Can it ever happen that we
execute this call while re-
entering?



Detecting reentrancy

cd =0 LT = false cd >0
if sent==false |4 if sent==false
[ Bob }\ ?.call.value(2)(); [ Bob ?.call.value(2)(); €=
sent = true; sent = true;
sent —» T sent —» T

N,

\_

N,

/ -
T T

:& ﬁ LT = false
~ ™ ~ 22—\

J

if sent==false if sent==false [€—
[ Bob ?.call.value(2)(); [€&— [ Bob }\ ?.call.value(2)();
sent = true; [ > sent = true;
sent — T sent - T

Reachability query

?.call.value(2)(); I‘—




Proving single-entrancy

cd =0 LT = false

y 4

-

if sent==false

<4

[ Alice }\

sent = true;

?.call.value(2)();

sent —» T

N,

\_

N

cd >0

-

e
&

(

if sent==false

=

sent = true;

?.call.value(2)();

sent — true

Y

\_

if sent==false

[ Alice }\

?.call.value(2)();

v
sent — true

sent = true;

~

¢

 __

J

T

-

G: true /;é\ false
if sent==false |&—

Ali]
[ ice }\

sent = true;

v
sent — true

?.call.value(2)();

Reachability query

?.call.value(2)(); I‘_
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 We implemented EtherTrust - a tool for static analysing Ethereum bytecode




Ether [rust

« Approach scales to full EVM bytecode!

 We implemented EtherTrust - a tool for static analysing Ethereum bytecode

Average running time: much
E:rFaTrUSt faster than the best state-of-
the art bug finding tool... and
sound!
10k | > | #ter. SE | #SE | #ter. MI | # Ml
O | 4 18 12 (18) 3
ET 100 4 107 2

SE: Single entrancy

MI: Independence of miner controlled state
#X: Number of contracts reported to violate X
#ter. X: Number of contracts for which the analysis terminates

O: Oyente (state-of-the-art) bug finder
ET: EtherTrust



Simplitications in this tutorial

e Simplified gas treatment (constant gas cost of 1)

* Inherent exception propagation (all available gas is given to the
caller)

o Simplified memory treatment (only memory cells are accessed,
never fragments; word indexed memory)

e computations on logical (instead of bounded) integers
* No limits on call stack and machine stack

¢ Some interesting opcodes are omitted
(DELEGATECALL, CALLCODE, CREATE, ...)



Simplitications in this tutorial

e Simplified gas treatment (constant gas cost of 1)

* Inherent exception propagation (all available gas is given to the
caller)

o Simplified memory treatment (only memory cells are accessed,
never fragments; word indexed memory)

e No limits on call stack and machine stack

» Some interesting opcodes are omitted & w
(DELEGATECALL, CALLCODE, CREATE, ...)% _»



We are hiring PhDs and Postdocs!

Iogics ‘ LOGICAL METHODS IN

COMPUTER SCIENCE

CALLFOR
DOCTORAL STUDENTS

LOGICAL METHODS
IN COMPUTER SCIENCE

DOCTORAL PROGRAM

TU Wien, TU Graz, and JKU Linz are seeking exceptionally talented and motivated students for their joint doctoral program
LogiCS. The LogiCS doctoral program focuses on interdisciplinary research topics covering

computational databases and computer-aided
logic artificial intelligence verification
security and cyber-physical distributed
privacy systems systems
THE PROGRAM FINANCIAL SUPPORT

LogiCS is a doctoral program focusing on logic and its
applications in computer science. Successful applicants will
work with and be supervised by leading researchers in the
fields of. computational logic, databases and knowledge
representation, computer-aided verification, security and

We are looking for doctoral students, where 30% of the posi-
tions are reserved for highly qualified female candidates. The
doctoral positions are financed by 4 year scholarships according
to the funding scheme of the Austrian Science Fund.

privacy, cyber-physical systems, and distributed systems. HOW TO APPLY
FACULTY MEMBERS Detailed information about the application process is available
on the LogiCS web-page

E.Bartocci | A. Biere | R. Bloem | A. Ciabattoni
G. Gottlob | T. Eiter | R.Grosu | L. Kovacs
M. Maffei | M. Ortiz

http://logic-cs.at/phd
The applicants are expected to have completed an excellent di-
ploma or master’ i puter science, mathematics, or
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. NN A No constraints are
o Abstract operations: ¢t =1 | collected for
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Hanaling abstract values

n+m:=n+m
. ST T No constraints are
 Abstract operations: YT ' = > collected for
TXo:=T computations with T
D Fai=T ] Abstract address is
~ _ ) ‘supertyped’ once it
o+ V= is modified
n=m:={n=m}
a = a = {true}
v = T := {true, false}
| T = 0 := {true, false}
 Abstract comparisons: . ~
v = «a := {true, false}
a = U := {true, false}




Hanaling abstract values

nFtm:=n+m
. ST T =T No constraints are
* Abstract operations: " = > collected for
TXo:=T computations with T
b Fa:i=T Abstract address is
~ . % ‘supertyped’ once it
@+ V= is modified
n=m:={n=m}
a = a:= {true}
0 = T := {true, false} Comparisons
| T = 0 := {true, false} with unknown
e Abstract comparisons: . ~ ) ) values evaluate
0 = a:= {true, false} to both true and
a = U := {true, false} false




Abstract ADD - revisited

MState,. ((size, sa), ma, cd) MState,. ((size, sa), ma, cd)
A size > 1 = Exc (cd)

AT = sa|size — 1]

A1 = sa|size — 2]

= MState,c1 ((size — 1, sa[size — 2 — & + 7)), ma, cd)

|

abstract operations are used!
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Memory values
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Ap=(T=a)?T : &
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4 T

Memory values
come from the
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Memory positions

MState,. ((size, sa), ma, cd)
N size > 1

AT = sa|size — 1]
Ap=((&=0a)?T : &)

A1 = sa|size — 2]

= MState,c41 ((size — 2, sa), malp — 9|, cd)

Instead of writing to q, writing to T means
we writeto T “writing everywhere”



Abstract Memory access

ma € D/{a} — D
4 T

Memory values

Memory positions come from the

MSTORE can’t be abstract domain MLOAD
MState,. ((size, sa), ma, cd) MState,. ((size, sa), ma, cd)

N size > 1 A size > 0

AT = salsize — 1] A salsize — 1] € {a, T}
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A1 = sa|size — 2]
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Instead of writing to q, writing to T means
we writeto T “writing everywhere”



Abstract Memory access

ma € D/{a} — D
4 T

Memory values

Memory positions come from the

MSTORE can’t be a abstract domain MLOAD
MState,. ((size, sa), ma, cd) MState,. ((size, sa), ma, cd)

N size > 1 A stze > 0

AT = salsize — 1] A salsize — 1] € {a, T}

A D :@@ —a)?T : i‘) = MStatepcy1 ((size — 2, sa|size — 1 %]), ma, cd)

A1 = sa|size — 2]
= MState,c41 ((size — 2, sa), malp — 9|, cd)

Instead of “reading from
everywhere”, we simply
read T

Instead of writing to q, writing to T means
we writeto T “writing everywhere”



Abstract Memory access -
continued

MState,c ((size, sa), ma, cd)
A size > ()
An = sa|size — 1]

= MState,c+1 ((size, sa[size — 1 — maln]]), ma, cd)

MLOAD

MState,. ((size, sa), ma, cd)
A size > ()
An = sa|size — 1]

= MState 1 ((size, sa[size — 1 — ma|T]]), ma, cd)



Abstract Memory access -
continued

MState,c ((size, sa), ma, cd)
A size > ()
An = sa|size — 1]

= MState,c+1 ((size, sa[size — 1 — maln]]), ma, cd)

MLOAD When reading the
memory at a concrete
position, we
additionally need to
MState ((size sa) ma cd) read from T, as there we

pc ’ ’ ’ can find the values that
A size > 0 have been written

. h
An = sa|size — 1] cYETyWREre

= MState, .1 ((size, sa[size — 1 — m]), ma, cd)



