
iOS Concept for SoniControl 2.0
SoniControl1 is a novel technology for the

recognition and masking of acoustic tracking

information. The technology helps end-users to

protect their privacy. Technologies like Google

Nearby and Silverpush build upon ultrasonic

sounds to exchange information. More and more of

our devices communicate via this inaudible communication channel. Every device with a

microphone and a speaker is able to send and receive ultrasonic information. The user is

usually not aware of this inaudible and hidden data transfer. To overcome this gap SoniControl

detects ultrasonic activity, notifies the user and blocks the information on demand. Thereby,

we want to raise the awareness for this novel technology.

The project SoniControl is funded by Netidee

(www.netidee.at) and developed at the Media

Computing Group of the Institute of Creative Media

Technologies at Sankt Pölten University of Applied

Sciences (mc.fhstp.ac.at). You can find all

published results and resources for the SoniControl

project on our website: sonicontrol.fhstp.ac.at.

Table of Contents
1. License .. 2

2. Motivation .. 2

3. Architecture .. 2

3.1. Detection algorithm ... 2

3.2. Concurrency (Threads) ... 3

3.3. Jammer ... 3

3.4. Noise generator .. 3

3.5. Signal recognition ... 3

3.6. Spectrogram visualization ... 4

3.7. Sonification ... 4

3.8. Map visualization .. 4

3.9. GPSTracker Geocoder ... 4

3.10. Sharing detections ... 4

3.11. Writing WAV file .. 5

3.12. Background audio capturing .. 5

3.12.1. Official documentation .. 5

1 https://sonicontrol.fhstp.ac.at/

funded by:

https://sonicontrol.fhstp.ac.at/
https://www.netidee.at/
https://mc.fhstp.ac.at/
https://sonicontrol.fhstp.ac.at/
https://sonicontrol.fhstp.ac.at/

iOS Concept for SoniControl 2.0 Contact: sonicontrol@fhstp.ac.at

 2

3.12.2. Other apps using background audio ... 6

3.12.3. Apple Developer Forums .. 6

4. Conclusion ... 7

4.1. Is it technically possible to create an iOS version of SoniControl? 7

4.2. Would an iOS version of SoniControl be allowed on the Apple App Store? 7

4.3. Potential limitations and solutions ... 7

1. License
This document is released under the CC BY-SA 3.02 license.

2. Motivation
We are currently evaluating the possibility to port our Android app SoniControl3 to iOS. Indeed,

many people contacted us in the past and asked if an iOS version of SoniControl is available.

There is a large demand from the iOS user community and we would like to provide them with

a solution. This document aims at answering the following questions:

● Is it technically possible to create an iOS version of SoniControl?

● Would an iOS version of SoniControl be allowed on the Apple App Store?

3. Architecture
The general architecture of SoniControl is described in the documentation available on our

website. It is especially recommended reading the Developer Documentation4 for

implementation details. In order to port SoniControl to iOS, most of the components will need

to be written again in a language natively supported by the platform (e.g. Swift), or using a

cross platform solution. Most library currently used are Java based and will have to be replaced

with an iOS equivalent. The core functionality of SoniControl is, however, based on the

Superpowered cross platform library and should only require limited modifications. Here are

the main components of the current SoniControl (Android) app and how to get started porting

them to iOS:

3.1. Detection algorithm

The core functionality of SoniControl, the detector, is written in C++ and based on the

Superpowered library5. In order to reuse this code, we will need an Objective-C++ file (a file

that can mix Objective-C and C++ code simply by changing the extension to .mm). This kind

2 https://creativecommons.org/licenses/by-sa/3.0/
3 https://play.google.com/store/apps/details?id=at.ac.fhstp.sonicontrol
4 https://sonicontrol.fhstp.ac.at/wp-content/uploads/2018/03/sonicontrol_developer_doc_and-

architecture_public.pdf
5 https://superpowered.com/

https://sonicontrol.fhstp.ac.at/
mailto:sonicontrol@fhstp.ac.at
https://creativecommons.org/licenses/by-sa/3.0/
https://play.google.com/store/apps/details?id=at.ac.fhstp.sonicontrol
https://sonicontrol.fhstp.ac.at/wp-content/uploads/2018/03/sonicontrol_developer_doc_and-architecture_public.pdf
https://superpowered.com/
https://creativecommons.org/licenses/by-sa/3.0/
https://play.google.com/store/apps/details?id=at.ac.fhstp.sonicontrol
https://sonicontrol.fhstp.ac.at/wp-content/uploads/2018/03/sonicontrol_developer_doc_and-architecture_public.pdf
https://sonicontrol.fhstp.ac.at/wp-content/uploads/2018/03/sonicontrol_developer_doc_and-architecture_public.pdf
https://superpowered.com/

iOS Concept for SoniControl 2.0 Contact: sonicontrol@fhstp.ac.at

 3

of file is used in the code samples from Superpowered6. It would then also be possible to

interact with this core component from an app written in Swift, using a bridge header.

3.2. Concurrency (Threads)

In SoniControl, we submit tasks to a thread pool to, for instance, start the detector in the

background. This archive7 leads through ways to asynchronously execute code on iOS. It is

explicitly recommended not to use threads directly, but instead the Grand Central Dispatch

(GCD) or operation queues. This is similar to the Android equivalent, so porting the app to iOS

should not require fundamental changes to the concurrency handling, only an adaptation to

language specific requirements.

3.3. Jammer

The Jammer actively disturbs and blocks ultrasonic communication around the device by

playing white noise at the frequencies used to communicate. It mostly requires playing audio,

which should be little development effort using either the AVAudioPlayer8 or the Audio Queue

Services9.

3.4. Noise generator

The noise generator produces the white noise to be used by the Jammer in order to block

ultrasonic communication. It is based on a Java FFT library. As iOS natively includes an FFT

library as part of Accelerate10, the porting to iOS should not present a major issue. Another

option would be to use Superpowered to implement this component.

3.5. Signal recognition

After the signal is detected, we analyze it to recognize the technology (most likely) used and

inform the user about it. This is based on Java FFT and Windowing libraries. As iOS natively

includes Digital Signal Processing libraries as part of Accelerate, the porting to iOS should not

present a major issue. Another option would be to use Superpowered to implement this

component.

6 https://github.com/superpoweredSDK/Low-Latency-Android-iOS-Linux-Windows-tvOS-macOS-

Interactive-Audio-
Platform/blob/master/Examples_iOS/SuperpoweredFrequencyDomain/SuperpoweredFrequencyDom
ain/ViewController.mm
7https://developer.apple.com/library/archive/documentation/General/Conceptual/ConcurrencyProgram
mingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationDesign.html#//apple_ref/do
c/uid/TP40008091-CH100-SW1
8 https://developer.apple.com/documentation/avfoundation/avaudioplayer
9 https://developer.apple.com/documentation/audiotoolbox/audio_queue_services
10 https://developer.apple.com/documentation/accelerate

https://sonicontrol.fhstp.ac.at/
mailto:sonicontrol@fhstp.ac.at
https://github.com/superpoweredSDK/Low-Latency-Android-iOS-Linux-Windows-tvOS-macOS-Interactive-Audio-Platform/blob/master/Examples_iOS/SuperpoweredFrequencyDomain/SuperpoweredFrequencyDomain/ViewController.mm
https://developer.apple.com/library/archive/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationDesign.html#//apple_ref/doc/uid/TP40008091-CH100-SW1
https://developer.apple.com/documentation/avfoundation/avaudioplayer
https://developer.apple.com/documentation/audiotoolbox/audio_queue_services
https://developer.apple.com/documentation/audiotoolbox/audio_queue_services
https://developer.apple.com/documentation/accelerate
https://developer.apple.com/documentation/accelerate
https://github.com/superpoweredSDK/Low-Latency-Android-iOS-Linux-Windows-tvOS-macOS-Interactive-Audio-Platform/blob/master/Examples_iOS/SuperpoweredFrequencyDomain/SuperpoweredFrequencyDomain/ViewController.mm
https://github.com/superpoweredSDK/Low-Latency-Android-iOS-Linux-Windows-tvOS-macOS-Interactive-Audio-Platform/blob/master/Examples_iOS/SuperpoweredFrequencyDomain/SuperpoweredFrequencyDomain/ViewController.mm
https://github.com/superpoweredSDK/Low-Latency-Android-iOS-Linux-Windows-tvOS-macOS-Interactive-Audio-Platform/blob/master/Examples_iOS/SuperpoweredFrequencyDomain/SuperpoweredFrequencyDomain/ViewController.mm
https://github.com/superpoweredSDK/Low-Latency-Android-iOS-Linux-Windows-tvOS-macOS-Interactive-Audio-Platform/blob/master/Examples_iOS/SuperpoweredFrequencyDomain/SuperpoweredFrequencyDomain/ViewController.mm
https://developer.apple.com/library/archive/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationDesign.html#//apple_ref/doc/uid/TP40008091-CH100-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationDesign.html#//apple_ref/doc/uid/TP40008091-CH100-SW1
https://developer.apple.com/library/archive/documentation/General/Conceptual/ConcurrencyProgrammingGuide/ConcurrencyandApplicationDesign/ConcurrencyandApplicationDesign.html#//apple_ref/doc/uid/TP40008091-CH100-SW1
https://developer.apple.com/documentation/avfoundation/avaudioplayer
https://developer.apple.com/documentation/audiotoolbox/audio_queue_services
https://developer.apple.com/documentation/accelerate

iOS Concept for SoniControl 2.0 Contact: sonicontrol@fhstp.ac.at

 4

3.6. Spectrogram visualization

After the signal is detected, we compute the corresponding spectrum for the frequencies

above 17kHz and show it as a spectrogram to the user. This is based on Java FFT,

Windowing, and graphics libraries. As iOS natively includes Digital Signal Processing (DSP)

as part of Accelerate and 2D rendering via its Core Graphics framework, porting the

spectrogram visualization to iOS should not present a major issue. Another option would be

to use Superpowered to implement the DSP part of this component.

3.7. Sonification

After the signal is detected, we offer the user to replay it at a lower frequency (currently one

octave lower, so dividing the frequency by two). This is based on the Superpowered library

and should work with minor modifications (to import the file as Objective-C++).

3.8. Map visualization

We offer a map visualization of the firewall rules saved by the user. It shows one marker per

rule, color coded as follows: green for “ignore”, orange for “ask next time”, and red for “block”.

When several markers are located too close to each other to be distinguishable, we group

them in a blue circle with the number of grouped detections. This map is based on the Java

OSMDroid library. Most equivalent options for iOS do not seem to be maintained (e.g. route-

me11 or MapKit12) but LibOSMScout13 might be an option, even though it is intended to be

used offline. The data about the rules are stored in a JSON file which can be read natively by

Objective C and Swift, the code only needs to be ported to the language chosen.

3.9. GPSTracker Geocoder

When we show the detection history or rules list, we replace the coordinates (place of

detection) with a user friendly location description, like the corresponding address if there is

one. This feature is called (reverse) geocoding and is available natively in the iOS framework.

3.10. Sharing detections

Users get the option to share their detections with the community anonymously. This will help

inform our users and the public audience about the spread of applications and companies

using ultrasonic communication. On SoniControl’s app side, this means we need a way to

make REST calls. On Android we used the Retrofit library to turn the HTTP requests into

objects methods, this is optional. On iOS, we could either use an equivalent library, like

Alamofire14, or send bare HTTP requests like recommended in the documentation to upload

11 https://github.com/route-me/route-me
12 https://github.com/mattrajca/MapKit
13 https://github.com/Framstag/libosmscout
14 https://github.com/Alamofire/Alamofire

https://sonicontrol.fhstp.ac.at/
mailto:sonicontrol@fhstp.ac.at
https://developer.apple.com/documentation/accelerate
https://github.com/route-me/route-me
https://github.com/route-me/route-me
https://github.com/mattrajca/MapKit
https://github.com/Framstag/libosmscout
https://github.com/Alamofire/Alamofire
https://developer.apple.com/documentation/foundation/url_loading_system/uploading_data_to_a_website
https://github.com/route-me/route-me
https://github.com/mattrajca/MapKit
https://github.com/Framstag/libosmscout
https://github.com/Alamofire/Alamofire

iOS Concept for SoniControl 2.0 Contact: sonicontrol@fhstp.ac.at

 5

data15 : “use a URLSession instance to create a URLSessionUploadTask instance. The upload

task uses a URLRequest instance that details how the upload is to be performed.”

3.11. Writing WAV file

When the user decides to share a detection, a short audio sample of the signal (everything

under 17kHz is removed) will be written to a WAV file and uploaded to the SoniControl server.

No user ID is stored, and thus the data is anonymous. This is based on Java FFT and

Windowing libraries. As iOS natively includes Digital Signal Processing libraries as part of

Accelerate, the porting to iOS should not present a major issue. Another option would be to

use Superpowered to implement this component.

3.12. Background audio capturing

A key requirement in order to port SoniControl to iOS is the possibility to let the firewall run in

the background. On Android, such a feature is achieved by using a foreground service,

keeping the audio processing alive and signalling it to the user via an infinite notification. On

iOS, to keep running in the background, apps must request a background mode permission

corresponding to what they are doing (e.g. audio, voip, …). However, apps requesting this

permission are often rejected during app review, and it is unclear if our use case would be

accepted. This section is a summary of our main findings.

3.12.1. Official documentation

The current documentation on background modes16 does not specify which use cases are

allowed or not. The review guidelines17 do not specify which use cases are allowed or not. In

general, it is hard to find up-to-date documentation on background audio: Many people link to

documentation that is not available anymore. In this archive18, (audio) “recording apps” are

described as a valid use case for the audio background mode. In this archive19, the audio

background mode is described as:

● “The app plays audible content in the background.”

● “Additionally, all watchOS 4 apps can record audio in the background. You must start

recording in the foreground, but recording continues when the app transitions to the

background.”

SoniControl does not play content in the background. It starts recording in the foreground on

user action, and continues in the background.

15https://developer.apple.com/documentation/foundation/url_loading_system/uploading_data_to_a_w
ebsite
16https://developer.apple.com/documentation/bundleresources/information_property_list/uibackground

modes
17https://developer.apple.com/app-store/review/guidelines/
18https://developer.apple.com/library/archive/documentation/Audio/Conceptual/AudioSessionProgram
mingGuide/AudioGuidelinesByAppType/AudioGuidelinesByAppType.html
19https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReferenc

e/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW22

https://sonicontrol.fhstp.ac.at/
mailto:sonicontrol@fhstp.ac.at
https://developer.apple.com/documentation/foundation/url_loading_system/uploading_data_to_a_website
https://developer.apple.com/documentation/accelerate
https://developer.apple.com/documentation/bundleresources/information_property_list/uibackgroundmodes
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/library/archive/documentation/Audio/Conceptual/AudioSessionProgrammingGuide/AudioGuidelinesByAppType/AudioGuidelinesByAppType.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW22
https://developer.apple.com/documentation/foundation/url_loading_system/uploading_data_to_a_website
https://developer.apple.com/documentation/foundation/url_loading_system/uploading_data_to_a_website
https://developer.apple.com/documentation/bundleresources/information_property_list/uibackgroundmodes
https://developer.apple.com/documentation/bundleresources/information_property_list/uibackgroundmodes
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/library/archive/documentation/Audio/Conceptual/AudioSessionProgrammingGuide/AudioGuidelinesByAppType/AudioGuidelinesByAppType.html
https://developer.apple.com/library/archive/documentation/Audio/Conceptual/AudioSessionProgrammingGuide/AudioGuidelinesByAppType/AudioGuidelinesByAppType.html
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW22
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW22

iOS Concept for SoniControl 2.0 Contact: sonicontrol@fhstp.ac.at

 6

3.12.2. Other apps using background audio

Given that the documentation does not clearly state which usages are allowed, we decided to

look for existing apps using audio in the background. For instance, the Voice Memo app from

Apple does work in the background (and shows a red status bar to alert the user about the

microphone usage). Here are some other examples:

● In July 2018, recording audio in the background seemed to be a valid use case

according to a standard user citing an older documentation (whose link is broken):

https://forums.developer.apple.com/message/323260#323260

● In 2016, an app got rejected for doing audio processing in the background trying to

detect something (Shazam like): https://stackoverflow.com/questions/35948665/ios-

audio-background-mode

Especially, one person wrote that the Apple reviewer said: recording is not an

appropriate use of Background Mode.

A commonly cited rejection reason is:

“2.16 Details

Your app declares support for audio in the UIBackgroundModes key in your Info.plist but did

not include features that require persistent audio.

Next Steps

The audio key is intended for use by applications that provide audible content to the

user while in the background, such as music player or streaming audio applications. Please

revise your app to provide audible content to the user while the app is in the background or

remove the "audio" setting from the UIBackgroundModes key.”

Note: in SoniControl the case is that we play inaudible content in the background for the

protection of the user. It remains an open question how this will be evaluated and seen by the

reviewers.

3.12.3. Apple Developer Forums

We tried to clarify the situation by asking on the Apple Developer Forums20 if our use case

could be accepted on the App Store, and got the answer that: “Only App Review can give you

a definitive answer to questions as to what will or won’t be allowed on the store.”

On the positive side: “At a technical level, the approach you’re suggesting (starting a record

session in the foreground and continuing it in the background) should work just fine.”

What will not work on iOS is the restart of recording from the background (happens after we

blocked a signal, we then restart scanning automatically, which is not possible since iOS 12.4).

We will have to redesign our workflow to start recording again in the foreground, e.g.:

- notifying the user that blocking is over and scanning should be restarted

- or continuously recording and discarding input while jamming to avoid having to restart

recording after blocking

20 https://forums.developer.apple.com/message/386388#386388

https://sonicontrol.fhstp.ac.at/
mailto:sonicontrol@fhstp.ac.at
https://forums.developer.apple.com/message/323260#323260
https://stackoverflow.com/questions/35948665/ios-audio-background-mode
https://stackoverflow.com/questions/35948665/ios-audio-background-mode
https://forums.developer.apple.com/message/386388#386388
https://forums.developer.apple.com/message/386388#386388

iOS Concept for SoniControl 2.0 Contact: sonicontrol@fhstp.ac.at

 7

4. Conclusion
4.1. Is it technically possible to create an iOS version of

SoniControl?

It seems technically feasible to implement the core functionality of SoniControl on iOS: a

scanner detecting ultrasonic communication and offering to block them. What cannot work

and will be redesigned is the restart of recording from the background (happens after we

blocked a signal, we then restart scanning automatically, which is not possible since iOS 12.4.

See the previous section on Apple Developer Forums for workarounds and the relevant forum

thread21).

4.2. Would an iOS version of SoniControl be allowed on the

Apple App Store?

Only the app review team can answer this question. It is clear that most of the functionality is

going to pass the review without problems (e.g. scanning in the foreground, blocking in the

foreground). What might be rejected during review is the permission to keep recording audio

in the background. The critical part is that the Audio Background Mode definition changed over

time and that the current documentation does not specify anymore which use cases are

allowed or not. We thus cannot conclusively state without uncertainty that SoniControl would

be allowed on the Apple App Store.

4.3. Potential limitations and solutions

If Apple would refuse our app to use the audio background mode, we would have to limit the

usage of SoniControl to an on-demand scanner running only in the foreground. This might

limit its ability to detect ultrasonic communication. Indeed, SoniControl first needs to build a

model of the ambient noise (background model) before being able to detect anomalies. If the

user suspects ultrasonic communication to be used in a place, the ambient noise most likely

will include the ultrasound signal, making it look “normal” to our detector. In this situation, one

should try to start scanning in an environment assumed to be exempt of ultrasound.

We also realized that on iOS (tested on iOS 13.1.1), recording does not block the microphone

for other apps. It is possible to record a memo while e.g. display a spectrogram of the current

noise. That means our “soft” blocking option cannot be used on iOS and users will have to

actively block signals if they want to be protected.

As mentioned, another component that we will have to redesign is the transition from blocking

to scanning as we cannot restart recording from the background. For instance, we could:

- notify the user that blocking is over and scanning should be restarted

- record continuously to avoid having to restart recording, and discard input while

blocking

21 https://forums.developer.apple.com/message/386388#386388

https://sonicontrol.fhstp.ac.at/
mailto:sonicontrol@fhstp.ac.at
https://forums.developer.apple.com/message/386388#386388
https://forums.developer.apple.com/message/386388#386388
https://forums.developer.apple.com/message/386388#386388

