
osmd-native
OpenSheetMusicDisplay for React Native & Kotlin / Compose
This repo contains sources for three platform libraries:

- osmd-kotlin for the Kotlin / Compose version
- react-native-osmd for the React Native version
- osmd-swift for the Swift / iOS Version (Readme coming soon)

Kotlin Kotlin

http://osmd-kotlin/
http://react-native-osmd/
http://osmd-swift/

React Native React Native

osmd-kotlin
OpenSheetMusicDisplay for Kotlin / Compose Currently supports:

- setting OSMDOptions via props
- loading a local or remote music xml file
- playing audio & controlling playback
- zoom in / out
-

Table of contents
● Installation
● Usage
● Examples
● Development
● Setup
● Structure

● Interface
● Updating OSMD
● Building & Publishing

Usage
Simplest usage rendering a music sheet:

import org.opensheetmusicdisplay.osmd.kotlin.OSMD

// path to a music xml file, either local or remote

val musicXML = "https://appassets.androidplatform.net/assets/AbideWithMe.mxl"

// osmd object controlling playback, zoom & cursor

val osmd = OSMD()

// ... in your composable layout:

Column {

osmd.OSMDView(musicXML)

}

Note: for local files, the file path passed via musicXML needs to be in the assets folder
within the main app directory.

Examples
See ./app for an example kotlin app using this library.
Some usage scenario examples:

Controlling audio playback
https://github.com/user-attachments/assets/a1d053a1-18e0-4d27-8f8d-f78bec6fcc5f

Audio playback can be controlled via play / pause / stop methods on the osmd instance:

val osmd = OSMD()

// ...

osmd.play() // start playback

osmd.pause() // pause playback at current position

https://github.com/user-attachments/assets/a1d053a1-18e0-4d27-8f8d-f78bec6fcc5f

osmd.stop() // stop playback and reset to beginning

Changing cursor color
https://github.com/user-attachments/assets/c4f96875-d16c-4ac1-9f11-168a184deb74

Cursor color can be set on the osmd instance:

osmd.setCursorColor('#f00')

Zoom In/Out
https://github.com/user-attachments/assets/feb45af8-51ed-42ad-9ae5-a0392d39ab69

Zoom scale can be set on the osmd object (default is 1.0):

osmd.setZoom(1.1)

Development

Setup
Make sure your environment is setup for Android Studio & Kotlin w/ Jetpack Compose.
Check https://developer.android.com/develop/ui/compose/setup

1. Clone the repo
2. Open the project in Android Studio

The project will include both the example app and the osmd-kotlin lib, which is the source
of the OSMD class providing functionality for audio playback, zoom, options & the
composable OSMDView component. You can simply run the example app during
development for testing.

Structure
The project directory has the following structure:

[root] (root project directory)

├─ app (kotlin example app source)

├─ [/../] osmd-kotlin (lib source)

├── assets (opensheetmusicdisplay.min.js & init scripts/html)

The architecture of this lib can be summarized like this:

https://github.com/user-attachments/assets/c4f96875-d16c-4ac1-9f11-168a184deb74
https://github.com/user-attachments/assets/feb45af8-51ed-42ad-9ae5-a0392d39ab69
https://developer.android.com/develop/ui/compose/setup

- An OSMD build is encapsulated inside a skeleton webview that loads nothing but an
empty html page with a single container inside to load OSMD into

- The InjectionScripts.kt file contains js that can be passed to and launched
inside the webview to load OSMD, set options, load & render a music sheet and
control playback within Kotlin. These scripts essentially expose the actual OSMD
functionality.

With that setup, the kotlin library is defined via the OSMD class - it exports functions for
playback control, cursor & zoom settings and the composable OSMDView component which
is the main view component that renders a given music xml.

Interface

View Props
/**

* The composable OSMDView rendering a music sheet.

*

* @param musicXML the path to the music sheet file (.xml or .mxl inside assets folder)

* @param options optional list of OSMD options (see
https://github.com/opensheetmusicdisplay/osmd-types-player)

* @param onRender optional function callback to be after render (i.e., for loading indicators
etc.)

*/

@Composable

fun OSMDView(musicXML: String, options: JSONObject? = null, onRender: (() -> Unit)? =
null)

Object methods
val osmd = OSMD()

// ...

osmd.play() // start playback

osmd.pause() // pause playback at current position

osmd.stop() // stop playback and reset to beginning

https://github.com/opensheetmusicdisplay/opensheetmusicdisplay

osmd.setCursorColor('#f00') // sets the color of the cursor

osmd.setZoom(1.1) // sets the zoom scale of the rendered sheet

Updating OSMD
If a new OSMD build is available, you'll need to update
opensheetmusicdisplay.min.js in osmd-kotlin/src/main/assets

react-native-osmd
OpenSheetMusicDisplay for React Native
Currently supports:

- setting OSMDOptions via props
- setting a musicXML string or URL via props
- playing audio & controlling playback
- zoom in / out

Table of contents
● Usage
● Example
● Development
● Setup
● Structure
● Interface
● Updating OSMD
● Building & Publishing

Usage
Simplest usage rendering a music sheet:

import { OSMDView } from 'react-native-osmd';

// this is a .ts file exporting a string

import { beethoven_geliebte } from '../assets/beethoven_geliebte';

// ...

<OSMDView

options={{

// optional, use whatever options you wish as supported by IOSMDOptions

backend: 'svg',

drawTitle: true,

drawingParameters: 'leadsheet',

}}

musicXML={beethoven_geliebte}

/>

Note: Currently, you need to pass either a remote URL or a string to musicXML - passing a
.xml file directly is not yet possible.

Examples
See ./example for an example app using this library, you can run it by running yarn
example android or yarn example ios (if on macOS).
Some usage scenario examples:

Controlling audio playback
https://github.com/user-attachments/assets/0408413c-6ea4-4409-b11c-4bb6d71acfd4

Audio playback can be controlled via play / pause / stop methods on the OSMDView ref:

const osmd = useRef<OSMDRef | null>(null);

// ...

<OSMDView

ref={osmd}

options={options}

musicXML={musicXML}

/>

// ...

osmd.current?.play(); // start playback

osmd.current?.pause(); // pause playback at current position

osmd.current?.stop(); // stop playback and reset to beginning

Changing cursor color
https://github.com/user-attachments/assets/2b552498-520e-4207-b3f8-7480a72a824f

Cursor color can be set on the OSMDView ref directly:

osmd.current?.setCursorColor('#f00');

Zoom In/Out
https://github.com/user-attachments/assets/ef046c2d-ce80-4d93-9417-807886b77018

Zoom scale gan be set on the OSMDView ref (default is 1.0):

osmd.current?.setZoom(1.1);

https://github.com/user-attachments/assets/0408413c-6ea4-4409-b11c-4bb6d71acfd4
https://github.com/user-attachments/assets/2b552498-520e-4207-b3f8-7480a72a824f
https://github.com/user-attachments/assets/ef046c2d-ce80-4d93-9417-807886b77018

Development

Setup
Make sure your environment is setup for node.js & react-native. Check
https://reactnative.dev/docs/environment-setup (do not use expo).

Note: This project was scaffolded using react-native-builder-bob, it uses yarn with a
monorepo configuration so you'll need to use yarn instead of npm.

1. Clone the repo
2. Switch into the project folder & install dependencies: yarn
3. Run the example app: yarn example android or yarn example ios

(depending on your OS & target)

This will run the example app from example/ which imports the library into a very simple
client app to showcase the functionality. You can then modifiy the library source code in
src/ and test your changes via hot-reload inside the example app.

Structure
The project directory has the following structure:

[root] (root project directory)

├─ android (native android source files)

├─ example (example client app using this library)

├─ ios (native ios source files)

├─ src (typescript source files)

├── assets (static or generated assets like osmd_min.ts)

├── injection (js code that is injected into the webview containing OSMD)

├── index.tsx (main entry point: exports interfaces and views of the lib)

├─ generate_osmd_min_as_string.js (updates the osmd build asset which is loaded into
the webview)

The architecture of this lib can be summarized like this:

- An OSMD build is encapsulated inside a skeleton react-native webview that loads
nothing but an empty html string with a single div inside to load OSMD into

https://reactnative.dev/docs/environment-setup
https://github.com/callstack/react-native-builder-bob
https://github.com/opensheetmusicdisplay/opensheetmusicdisplay

- The injection_scripts.ts file contains js that can be passed to and launched
inside the webview to load OSMD, set options, load & render a music sheet and
control playback by passing messages between the webview context & react-native.
These scripts essentially expose the actual OSMD functionality

With that setup, the react native library is defined via index.tsx - it exports type interfaces
and the central OSMDView which is the main react-native component that renders a given
music xml and exposes methods to the parent component via a forwardRef.

Interface

Component Props
/** Defines the properties of the OSMD react component */

export interface OSMDProps {

/** The music document to render.

* It needs to either be a URL to a MusicXML file or

* a string of the MusicXML content

*/

musicXML: string;

/** (optional) Options to set on OSMD */

options?: IOSMDOptions;

/** (optional) Custom styling to be applied to the content container */

style?: StyleProp<ViewStyle>;

/** (optional) Callback that is called once the content is rendered.

* Can be used to show/hide loading indicators, etc.

*/

onRender?: () => void;

}

Component Interface
/** Defines the interface of the OSMD object */

https://react.dev/reference/react/forwardRef

export interface OSMDRef {

/** starts audio playback */

play: () => void;

/** pauses audio playback at the current position */

pause: () => void;

/** stops audio playback and resets to initial position */

stop: () => void;

/** sets the osmd cursor color */

setCursorColor: (color: string) => void;

/** sets the zoom scale */

setZoom: (scale: number) => void;

}

Updating OSMD
Since react-native-webview does not support import of local scripts inside the webview
html, we need to pass the osmd build by injecting it as a string via the
injectedJavaScript prop.

If a new OSMD build is available, you'll need to update
opensheetmusicdisplay.min.js and then run node
generate_osmd_min_as_string.js to make sure the src/assets/osmd_min.ts file
gets updated.

