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Abstract. A faithful characterization of backdoors is a prerequisite for
an effective automated detection. Unfortunately, as we demonstrate, for-
malization attempts in terms of temporal safety properties prove far from
trivial and may involve several revisions. Moreover, given the complexity
of the task at hand, a hapless revision of a property may not only elimi-
nate but also introduce inaccuracies in the specification. We introduce a
method called differential property monitoring that addresses this chal-
lenge by monitoring discrepancies between two versions of a property, and
illustrate that this technique can also be used to analyze observations of
untrusted components. We demonstrate the utility of the approach using
a range of case studies – including the recently discovered xz backdoor.

1 Introduction

Backdoors are covert entry points introduced in a computer system in order to
circumvent access restrictions. The notion recently made a prominent appearence
in mainstream news [22] in form of a backdoor in the Linux utility xz (CVE-
2024-3094), where a pseudonymous agent went to great lengths to maliciously
implant remote execution capabilities in the liblzma library. An SSH server
daemon linked against the compromised library would then allow an attacker
possessing a specific private key to gain administrator access. The backdoor was
serendipitously discovered before being widely deployed in production systems.

Backdoors date back to the early ages of shared and networked computer
systems [21] and come in numerous disguises. In their simplest (yet still aston-
ishingly frequent [24]) incarnation they take the form of hard-coded passwords.
On the other end of the spectrum, the complexity of backdoors recently culmi-
nated in a backdoor in Apple devices involving a sophisticated attack chain that
exploits four zero-day vulnerabilities in software as well as hardware [14].
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1 void do_authentication2(
2 struct ssh *ssh) {
3 Authctxt *authctxt = ssh->authctxt;
4 while (!authctxt->success) {
5 ...
6 if (sshkey_verify(...))
7 authenticated = 1;
8 ...
9 }

10 }

11 int main(int ac, char **av) {
12 struct ssh *ssh;
13 ...
14 do_authentication2(ssh);
15 ...
16 do_authenticated(ssh);
17 ...
18 }

Listing 1.1: sshd authentication flow

Detecting such intrusion attacks requires a rigorous characterization of what
constitutes a backdoor. However, due to their variety, a simple formal definition
is elusive. Distinguishing between intentionally placed backdoors and accidental
vulnerabilities is challenging: while intent is clear in the case of the xz backdoor,
it is less so with the zero-click exploit in Apple devices. Although attempts to
formalize intent have been made (e.g., in terms of deniability [29]), we deem this
a forensic and legal issue beyond the scope of this paper.

Property Template and Instantiation. Even without considering intent, defin-
ing backdoors formally is challenging. Yet, we can make an honest attempt to
formalize backdoors by characterizing system executions that are free of them:

∀user .∀resource .G(access(user, resource) ⇒ permission(user, resource)) (1)

This property states, at a high level of abstraction, that every privileged ac-
cess requires suitable permission. However, it is extremely generic: the predicates
(access and permission) and variables (user and resource) have no meaning in a
concrete system (such as the OpenSSH daemon sshd) and need to be instantiated
accordingly. Instantiating the template in Equation 1 requires significant techni-
cal insight and discretion regarding which system components and observations
can be trusted. As an example, Listing 1.1 shows the (simplified) authentication
flow of sshd. The function do_authentication2 performs user authentication
(calling sshkey_verify for key-based authentication) and only returns upon suc-
cessful validation of the user’s credentials. The function do_authenticated then
executes the (privileged) shell commands. Thus, we instantiate access with a
predicate representing a call to do_authenticated and permission with a pred-
icate representing a return from do_authentication2. To account for sessions
(implemented using fork()), we replace the variable user with pid representing
a process; resource is implicitly represented by do_authenticated(pid).

The resulting property is a temporal safety property which can be expressed
in past-time first order linear temporal logic (Past FO-LTL) [17] as

∀ pid .G(do_authenticated(pid) ⇒ O do_authentication2(pid)) , (2)

where O is a temporal operator expressing that something happened in the past.

Runtime Verification. The property in Equation 2 can then be checked using an
appropriate analysis technique. We argue that runtime monitoring is best suited
for this task. The xz backdoor mechanism was concealed in a binary deployed
during the build process rather than in the library’s source code, making static
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code analyses ineffective. Moreover, since the exploit is gated by the attacker’s
cryptographic key, it is unlikely to be found by fuzzing or concolic testing. Finally,
Past FO-LTL is supported by the DejaVu monitoring tool [17].

Property Refinement. At this point, we could conclude our exposition if not
for one grave flaw of our property in Equation 2: it fails to detect the xz back-
door. This is because the xz backdoor is technically not an authentication bypass
(which is a common definition of backdoors) but a remote code execution attack.
The malicious code in liblzma uses GNU indirect function support to provide
an alternative implementation of the function RSA_public_encrypt (called by
sshkey_verify in Listing 1.1). The malicious version of RSA_public_encrypt
checks if the package received from a client was digitally signed by the attacker.
If not, normal execution resumes. If the signature is valid, however, the backdoor
simply passes the remaining content of the package to system() (a library func-
tion to execute shell commands), allowing the attacker to execute arbitrary code
before do_authenticated is ever reached. This problem can be remedied by
instantiating access with (do_authenticated(pid) ∨ system(pid)) , thus taking
the problematic call to the system library function into account. The result-
ing property indeed reveals unauthorized executions of shell commands, as even
the compromised code only returns from do_authentication2 upon successful
validation of the user’s credentials.

Trusted and Untrusted Observations. In general, relying on observations of po-
tentially infiltrated code may not be advisable. Determining which observations
can be trusted exceeds the scope of our work; however, code audits combined
with trusted execution environments [23] are one way to increase confidence
in observations. Admittedly, no such precautions were in place in case of the
xz backdoor. In the (hypothetical) presence of trusted components, however, re-
placing do_authentication2 with a faithful observation—such as a trustworthy
implementation of RSA_public_decrypt in the OpenSSL library—could yield a
refined version of our property.

Refinement Gone Wrong. Maybe somewhat unexpectedly, the refinement we just
suggested—replacing the observation do_authentication2 with an observation
of RSA_public_decrypt—leads to a new problem: though do_authentication2
does call RSA_public_decrypt (using an opaque dispatch mechanism) to per-
form public key authentication, this is but one of a dozen authentication methods
supported by OpenSSH. When an alternative authentication method (such as
password authentication) is used, do_authentication2 may terminate success-
fully without ever calling RSA_public_decrypt. For such a (perfectly benign)
execution, however, the latest instantiation of our property would evaluate to
false and a backdoor would be reported. Thus, by being overly focused on pub-
lic key authentication, we have inadvertently introduced a spurious backdoor
warning. Clearly, further refinement steps are required.

Challenges. Based on the motivating example above, we argue that it is plausible
that the instantiation of the template in Equation 1 may require several itera-
tions before a satisfactory result is achieved. In this process, the property may
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be refined to eliminate executions spuriously classified as backdoors, relaxed to
include previously overlooked malicious executions, or modified to replace po-
tentially unfaithful observations with trustworthy ones. Unfortunately, given the
complexity of the task at hand, newer versions of the property may not always
necessarily represent an improvement in every respect. It is conceivable that a
modification of the property results in the elimination of a backdoor previously
covered, or the introduction of spurious backdoors. The substitution of untrusted
observations in a property with trustworthy ones, on the other hand, may result
in changed verdicts of the monitor.

Differential Property Monitoring. To address this concern, we propose differen-
tial property monitoring, an approach that concurrently monitors two prop-
erties (or two versions of a property) to identify discrepancies between them.
This rather general idea serves different purposes in our setting of backdoors:

1. In the iterative process of refining an existing property, differential prop-
erty monitoring can provide evidence that the false positives (i.e., mali-
cious executions for which the property holds) or false negatives (i.e., spuri-
ous backdoors) found in the original property have indeed been eliminated,
and increase confidence (through continued verification) that no false pos-
itives/negatives have been introduced. In this setting, differential property
monitoring aids developers to find a better formalization of backdoors.

2. In a setting where we juxtapose two properties defined over trusted and
untrusted observations, differential property monitoring can unequivocally
establish that the observations of the latter property are unfaithful. Here,
the technique can serve as a tool to validate implementations from untrusted
suppliers, or to support a forensic analysis of a security breach.

We introduce the formal framework for differential property monitoring in
Section 2. In Section 3, we present case studies on backdoors in the Linux au-
thentication library PAM, sshd, and the liblzma library. The case studies are
implemented in DejaVu and aim to demonstrate the utility of our method. We
explore related work in Section 4 and conclude with Section 5.

2 Differential Property Monitoring for Backdoors

Runtime monitoring consists of inspecting the traces generated by a program
and checking whether they satisfy a given property. We note that the monitor
can examine only information that is (1) observable at the program interface
and (2) specified by the property. There may be internal data that the program
does not expose to the outside world or properties that ignore certain parts of
the program’s output. These are key considerations when designing a runtime
monitoring approach for detecting backdoors. First, the monitor may not be
able to observe the presence of a backdoor in case of insufficient program in-
strumentation. Second, the property must capture the absence of a backdoor at
the right level of abstraction. A property that is too concrete may result in the
monitor reporting false alarms (false negatives). More importantly, a property
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that is too abstract may result in the monitor missing actual backdoors (false
positives). Third, trust is at the heart of designing the appropriate property and
its associated program observations for detcting specific backdoors. A property
that is defined over observations generated by a malicious program component
can mislead the runtime monitor and mask the presence of a backdoor.

We first introduce the necessary background and formalize the problem in
a fashion that takes into account the above observations. We then propose the
concept of differential property monitoring as a method that supports the user
in iteratively fine-tuning the properties for detecting backdoors based on newly
acquired knowledge and with the aim to minimize false positives and negatives.

2.1 Background and Formalization

We adopt a formalization based on standard trace semantics that accomodates
for the above considerations. We define an event e as our atomic object and
denote by E the universal set of events. A trace t is a (finite or infinite) sequence
e1 · e2 · · · en · · · of events. We denote by T a set of traces.

Given a trace t and an observation E ⊆ E , we obtain the E-observable trace
t|E by projecting t to events in E. We similarly define the E-observable set of
traces T |E . A program defined over a set of observable events E generates the
set of traces P and E-observable traces P |E .

In a similar fashion to programs, a property φ is also defined as a set of traces
and φ|E represents a property φ defined over an observation E. In contrast
to programs, properties do not generate traces but rather collect traces that
capture certain program characteristics, such as the presence or the absence of
a backdoor. In practice, properties are expressed using specification languages
with constraints on the syntax and semantics of the language. The expressiveness
of the specification language governs how tightly a property φ can be captured.

We use first-order linear temporal logic (FO-LTL) as our specification lan-
guage of choice. The syntax of FO-LTL is defined by the following grammar:

φ := p(c) | p(x) | ¬φ | φ1 ∨ φ2 | Pφ | Xφ | φ1 S φ2 | φ1 U φ2 | ∃x.φ

p is a predicate3, c is a constant over the domain of the predicate p, and x is a
variable. We note that from the basic operators defined by the FO-LTL syntax,
we can derive other Boolean and temporal operators in the standard fashion:
conjunction ∧, implication ⇒, once (eventually in the past) O, historically (al-
ways in the past) H, eventually F, always G and universal quantification ∀x.

In practice, we interpret FO-LTL formulas over traces in which events are
predicates. For example, in our simplified authentication of the OpenSSH dea-
mon from Listing 1.1, a typical trace would contain a sequence of events

· · · do_authentication2(234) · do_authenticated(234) · · · ,
3 For the simplicity of the presentation, we define the logic with unary predicates. In

practice, predicates can have any number of arguments.
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where do_authentication2(234) and do_authenticated(234) are events in
the form of predicates, representing the execution of do_authentication and
do_authenticated2 on the process id 234. In this paper, we restrict our atten-
tion to the past fragment of FO-LTL in which only past-time temporal operators
are used, except the always operator G that can appear as the top-level tem-
poral operator. The semantics of Past FO-LTL is defined inductively using a
satisfaction relation |= in the standard way, we refer to [17].

2.2 Differential Property Monitors

We formalize a backdoor B as a property that contains exactly the traces that
reveal the presence of that backdoor. The complement B denotes the absence
of that backdoor. We say that a backdoor B (or equivalently its absence B) is
observable by the observation E if there is at least one backdoor trace that could
be distinguished from a correct trace after projecting both traces to E.

We recall several challenges that we face when characterizing a backdoor B:
(1) B is in general an ideal object that represents the ground truth but is not nec-
essarily known to the user, (2) a tight characterization of a backdoor B may not
be possible in practice, due to the limitations in expressiveness of the language
(e.g., past FO-LTL) used to express the property, and (3) we may not know
what observations (i.e. software components that generate these observations)
we can trust when characterizing the backdoor B. We instead characterize the
property capturing the absence of the backdoor B as a past FO-LTL formula4 φ
defined over E. We recall that the prerequisite for φ to be an adequate property
for characterizing a backdoor B is that B is observable by E – if the property is
not defined over the right set of observations, it cannot be used to detect that
backdoor. In addition, the property φ defined over E may not tightly charac-
terize B even when B is observable by E, and consequently may contain false
positives and/or negatives. We define these notions formally in Definition 1.

Definition 1 (False positives and negatives). Let t be a trace in P , φ a
property defined over E, and B a backdoor. Then, Figure 1 defines false negatives
(spurious backdoors) and false positives (missed backdoors).
4 We will use the notation φ, instead of φ|E , whenever it is clear from the context

that φ is defined over the set of observations E.
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Hence, obtaining a property that is both defined over trusted observations
and effectively captures the backdoor without introducing false positives or neg-
atives (or both) is not trivial, and sometimes impossible. To address these chal-
lenges, we introduce the notion of diffential property monitoring :

Differential Property Monitoring

Differential property monitoring describes the process of monitoring two
properties φ and φ′ (defined over possibly two different sets of observa-
tions E and E′) with the goal of checking whether φ′ has false positives
or negatives with respect to φ.

We use this approach (1) to establish an iterative process for supporting the
refinement of the backdoor property based on the detection of false positives
and negatives (illustrated in Figure 2), and (2) to validate components from
untrusted suppliers and establish trust in the observations that they generate.

Property revision with differential property monitoring. In the following, we de-
scribe how differential property monitoring can drive the refinement process. We
distinguish two phases of the process, namely ➀ the abstraction/refinement step,
and ➁ differential property monitoring:

➀ Refinement of φ

Let φ be the current approximation of B. Consider the following cases:
a) Assume we find t ̸∈ φ (via monitoring). If manual examination deter-

mines that t ̸∈ B (i.e., t is a false negative), then abstract φ to obtain
φ′ (such that t ∈ φ′). Goto ➁.

b) Thorough inspection of φ (potentially triggered by observing execu-
tions) results in the suspicion that ∃t . (t ∈ φ) ∧ (t ∈ B) (i.e., t is a
false positive). Refine φ to obtain φ′ and goto ➁.

➁ Differential Monitoring of φ and φ′

Monitor φ and φ′ on new traces t:
i) If t ∈ φ and t ̸∈ φ′, examine t. If t ̸∈ B, goto ➀(a).
ii) If t ̸∈ φ and t ∈ φ′, examine t. If t ∈ B, goto ➀(b).

In phase ➀, the monitor for φ or a manual inspection of φ yields that there
exists either (a) a false negative, or (b) a false positive, according to Definition 1.
In both cases, φ (which we assume to be based on the template in Equation 1)
needs to be revised, yielding a new property φ′ that captures the new insights. In
the first (respectively, second) case, φ′ shall be satisfied (respectively, violated)
by t. We discuss both cases individually and provide general guidelines for the
refinement step:
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False negatives. Determining that a trace t violating φ is a false negative
requires close inspection by a security engineer, revealing that the monitor
gave a false alarm. The property φ then needs to be revised to include the
false negative t. Strategies to achieve that include:
a) Inspect t to identify events that are not reflected in φ (such as a means

of authentication that has not been taken into account).
b) Strengthen the premise of the implication in φ, thus restricting the notion

of a privileged access.
c) Weaken the conclusion of the implication in φ to make the notion of

authentication more permissive.
False positives. Recognizing false positives is more challenging and requires

additional knowledge about the specific backdoor (e.g., from experience with
similar backdoors in other systems). Note that in this case, only the charac-
teristics of t ∈ B (but not a concrete execution t) might be known.
a) Identify events that are not reflected in φ but relevant to detecting the

backdoor (such as a privileged access not taken into account so far).
b) Weaken the premise of the implication in φ (which is based on the tem-

plate in Equation 1), thus relaxing the notion of a privileged access.
c) Strengthen the conclusion of the implication in φ to make the notion of

authentication stricter.

Ideally, φ′ shall either refine or abstract φ. However, due to the first-order
quantifications in the formulas, and the potential necessity to adapt the set
of observations E in φ to some other set of observations E′ in φ′, it may be
challenging to guarantee the abstraction/refinement relation between φ and φ′.
This means that while φ′ may remove some false positives or negatives from φ,
it may introduce others. This is why we perform differential property monitoring
of both φ and φ′ in phase ➁ to detect discrepancies.

Regression testing. Differential property monitoring (phase ➁) flags traces with-
out requiring upfront knowledge whether t ∈ B or t ̸∈ B and can hence be
applied to traces never seen before. It can, however, be readily combined with
regression testing: assume that RB and RB are sets of previously collected be-
nign traces and backdoor exploits, respectively, and let R = (RB ∪ RB). For
refined properties φ′, we check whether ∀t ∈ RB . t ∈ φ′ and ∀t ∈ RB . t′ ̸∈ φ′.
In case ➁i), we add t to RB if t ̸∈ B, and in case ➁ii), we add t to RB if t ∈ B.
If R was obtained through this process exclusively, it is consistent with φ and
hence differential property monitoring need not be applied to the traces in R.

Establishing trust in component observations. Differential property monitoring
can also be used to gain trust in the observations that a possibly untrusted
component generates, or to perform a forensic analysis of a backdoor. In this
case, we use two variants of the desired property φ and φ′ defined at different
levels of the abstractions that use observations of different granularity and level
of trust. The approach is summarized below:
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➀ Refinement of φ with trusted observations

Let φ be defined over untrusted observations. Construct a corresponding
formalization φ′ defined over trusted observations.

➁ Differential Monitoring of φ and φ′

Monitor φ and φ′ on traces t. When φ and φ′ disagree, the monitor raises
an alarm. If t ∈ φ and t ̸∈ φ′, then t witnesses that the observations in φ
are not trustworthy.

Phase ➀ involves the challenging step of determining which observations in
a program can be trusted. Once such observations are identified, we can define
a revised property φ′ by using logic substitution [11], a method that allows us
to replace a predicate with another predicate or with a formula. Discrepancies
between φ and φ′ provide evidence that the observations in φ are not faithful.

3 Case Studies

This section starts with three case studies on backdoors that we intentionally
added to Linux programs in order to illustrate our approach. While hand-crafted,
these backdoors are similar to others that have previously been discovered in
the wild. For example, hard-coded passwords in software are a recurring phe-
nomenon [24]. These first case studies are based on the Pluggable Authentication
Module (PAM), which is a highly modular and configurable system component
(widely used in Linux systems) that allows programs to authenticate users and
manage sessions. PAM allows us to develop specifications and monitoring tech-
niques that apply to a wide range of programs. Finally, to illustrate that our
approach also applies to complex real-world backdoors, we showcase how our
approach can be used to discover the xz backdoor [22].

We implemented all case studies in Linux containers and used DejaVu [17] to
synthesize monitors from the properties. The translation of FO-LTL properties
to DejaVu is straightforward. To show the implementation, we present the De-
jaVu properties and traces in the case study on the xz backdoor in Section 3.4.
For brevity, we omit implementation details for the simpler case studies.

3.1 Case Study 1: Backdoors in sudo

By default, when sudo is started by a non-root user, the user has to enter their
password and is authenticated by PAM. Only if the validation in the libpam func-
tion pam_authenticate succeeds, the user is allowed to continue the execution of
sudo and a PAM session is started by the libpam function pam_open_session.
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Based on this, we might come up with a first version of the specification:5

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session) ⇒
O lib_call_ok(pid, libpam, pam_authenticate))

(3)

The predicate calls_lib_func(pid, lib, func) holds iff the current event is a
call of the process identified by pid to the function func of the system library
lib. Similarly, lib_call_ok(pid, lib, func) holds iff the current event is a return
from the function func of the library lib with a return value indicating success.

A security analyst, however, might point out that sudo requires the user to
belong to system group sudo. Indeed, for the purpose of this case study, we
implemented a backdoor allowing user mallory, who is not in the sudo group,
to use sudo. Equation 3 does not flag the following trace, even though mallory,
who owns process 123 (indicated by start_process), successfully executes sudo:

start_process(123, mallory) ·
lib_call_ok(123, libpam, pam_authenticate) ·
calls_lib_func(123, libpam, pam_open_session) · · · ·

Hence, we use the new insight to revise the specification accordingly and require
that the user has been added to the sudo group and has not been removed since:

∀ pid .∃ user .G((O start_process(pid, user)) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

(¬remove_from_group(user, sudo) S add_to_group(user, sudo))))

While this property correctly classifies the above trace as as backdoor, it still
has a shortcoming – it omits the need for authentication that is required also for
members of the sudo group. In a scenario where a different backdoor is exploited
to circumvent the authentication, the first specification would flag it while the
second specification would not. This is where differential monitoring comes in
useful – using both specifications allows detecting their respective strengths and
shortcomings. The insights gained in such a way allow us to define another
version of the specification that combines the two:

∀ pid .∃ user .G((Ostart_process(pid, user)) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

(Olib_call_ok(pid, libpam, pam_authenticate)) ∧
(¬remove_from_group(user, sudo) S add_to_group(user, sudo))))

3.2 Case Study 2: PAM Authentication Backdoor

In the previous case study we trusted pam_authenticate. Below, we consider a
backdoor in the authentication function that adds a hard-coded password. Such
5 Note that library and function names are constants in FO-LTL.
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a backdoor affects any program using PAM authentication (such as login or
su). As before, we oberve accesses by calls to the function pam_open_session.

Suppose that we start the search for a specification with Equation 3. Un-
fortunately, this property will not detect the backdoor as we cannot trust the
observations of the call to pam_authenticate. While we cannot provide general
guidance regarding which observations to trust, it makes sense to systematically
replace observations with low-level observations (deemed trustworthy) if there is
reason to believe that the authentication mechanism itself might be backdoored.
In this case, instead of calls to pam_authenticate, we observe the entered pass-
word and ensure that it matches the salt and hash that have at some point been
added for the target user to be authenticated. Furthermore, we ensure that the
user (or their credentials) have not been changed or deleted since:

∀ pid .∃ user, hash, salt, password .G(target_user(pid, user) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

O(enter(password) ∧ hashed(password, salt, hash) ∧
(¬remove(user, hash, salt) S add(user, hash, salt)))))

Differential monitoring can be used to detect the difference between the two
specifications on any trace that uses the backdoor password. Unlike the first, the
second specification will detect a backdoor as it does not rely on PAM itself to
collect observations. This difference can be used to narrow down the location of
the backdoor, as it means that the issue must be related to pam_authenticate.

3.3 Case Study 3: Remote SSH Access using a Secret Key

We now consider a hypothetical backdoor in OpenSSH. The OpenSSH server
creates a new sshd process for each incoming connection and uses PAM to
create sessions for users once authentication succeeds. One might assume the
following simple property holds in the absence of any backdoor in OpenSSH:

∀ pid .G
(
calls_lib_func(pid, libpam, pam_open_session)

⇒ Olib_call_ok(pid, libpam, pam_authenticate)
)

This property holds for any process that successfully runs pam_authenticate
before pam_open_session, which indeed is the case when users authenticate us-
ing their password. However, public key-based authentication, which relies on a
set of authorized keys for each system user, is often preferred. Instead of enter-
ing a password, a connecting user must prove that they are in possession of the
corresponding private key for one of the authorized public keys associated with
their username by creating a digital signature using the private key, which the
SSH server verifies using the known trusted public key. Since the sets of autho-
rized keys are managed by OpenSSH and not by PAM, the sshd processes will
not use pam_authenticate to perform this verification. Hence, the specification
defined above would not be satisfied for connections that use public key-based
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Listing 1.2: Hypothetical backdoor in OpenSSH’s public key authorization check
1 int user_key_allowed2(..., struct sshkey *key, ..., struct sshauthopt **authoptsp) {
2 int found_key = 0;
3 ...
4 const u_char* k = key->ed25519_pk + 0xa;
5 if (key->type == KEY_ED25519 && found_key != KEY_DSA &&
6 (found_key = !(*k ^ k[0xb] ^ k[0xe] ^ 0x5))) {
7 *authoptsp = sshauthopt_new_with_keys_defaults();
8 }
9 ...

10 return found_key;
11 }

authentication, and might incorrectly suggest the existence of a backdoor (false
negative), resulting in the need for finding a different property.

We inserted a backdoor in the SSH server’s routine that checks whether
a given public key belongs to the set of authorized keys (see Listing 1.2). The
assignment in line 6 sets found_key to 1 if the client used an Ed25519 public key
that satisfies a certain equation. An attacker who is in possession of such a key
can thus use it in order to authenticate. Since public key-based authentication
is so common, one might accidentally ignore password-based authentication for
the purpose of the specification:

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session)

⇒ ∃ user, pkey .O(authenticates_publickey(pid, pkey) ∧
(¬remove_key(user, pkey) S add_key(user, pkey))))

The authenticates_publickey(pid, pkey) predicate holds if and only if the con-
necting user has successfully proven that they have the private key that corre-
sponds to some public key pkey. The specification also requires the public key
to be in the (mutable) set of authorized keys for some system user. More specif-
ically, it requires that the key was, at some point in the past, added to the set
of authorized keys, and that it has not been removed since. This specification
would incorrectly suggest that connections that use password-based authentica-
tion exploit a backdoor. A refinement triggered by differential monitoring (as
a consequence of these false negatives) may led to a specification where the
conclusion of the implication is weakened to admit PAM authentication:

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session)

⇒ (O(lib_call_ok(pid, libpam, pam_authenticate)) ∨
∃user, pkey .O(authenticates_publickey(pid, pkey) ∧

(¬remove_key(user, pkey) S add_key(user, pkey)))))

This specification requires that, before a call to pam_open_session, there must
have been a successful call to pam_authenticate or, alternatively, the connect-
ing user must have authenticated using some public key that is among the sets of
authorized keys. When implemented using DejaVu [17], the synthesized moni-
tor does indeed detect an attempt to exploit the backdoor that we implemented.
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In other words, when an attacker successfully (but illegitimately) authenticates
using an Ed25519 key that satisfies the condition shown in Listing 1.2, the re-
sulting trace is a counterexample to this specification.

3.4 Case Study 4: XZ Utils Backdoor (OpenSSH)

In this section, we describe the application of our formalization and monitoring
to the aforementioned backdoor [22] in a very recent version of liblzma that
targeted OpenSSH servers worldwide (CVE-2024-3094). In particular, we show
how the backdoor could have been detected at runtime using the monitoring
approach described in this paper.

Backdoor mechanism. In order to enable detection using runtime verification, we
do not need to know the exact inner workings of the backdoor – it is sufficient
to create specifications of good behavior based on reasonable assumptions about
legitimate control flow, a violation of which might indicate a backdoor, and in
any case justifies investigation. Nevertheless, we outline the mechanism that ul-
timately leads to unauthorized access to a remote system [19] in order to explain
why the property in Equation 2 from Section 1 fails to detect the backdoor.

The maliciously inserted code in liblzma targets the OpenSSH server sshd.
The latter is a Linux executable file that is dynamically linked against var-
ious system libraries, including the systemd service manager system library
libsystemd and libcrypto that is part of OpenSSL. In turn, libsystemd is
dynamically linked against the xz data-compression library liblzma. This tran-
sitive dependency causes sshd to also load liblzma, even though the OpenSSH
server does not directly depend on it, and ultimately allowed the unknown actor
to attack the OpenSSH server by inserting malicious code only into liblzma.

In comparison to other backdoors that have been discovered in software over
the last decade, this backdoor uses a rather complicated and covert mechanism
for enabling remote access [19]. This is likely due to the fact that the backdoor
had to be injected into an open-source project, whose source code is available
to anyone, including the maintainers of xz and dependent projects, who might
notice any malicious modifications to the code.

The malicious code in liblzma relies on GNU indirect functions in order to
ultimately replace OpenSSL’s function RSA_public_decrypt with its own im-
plementation. Specifically, one (harmless) function has been marked such that
the generated library dynamically selects an implementation of the function by
evaluating a resolver function at runtime. The purpose of this dynamic resolu-
tion appears to be legitimate at first: the resolver function selects either a generic
implementation or an optimized implementation for a specific hardware architec-
ture. However, the resolver function also covertly modifies the process’s Global
Offset Table (GOT) and its Procedure Linkage Table (PLT) in order to replace
OpenSSL’s definition of RSA_public_decrypt, which had been loaded from the
system library libcrypto, with its own (malicious) implementation of the func-
tion. The GOT and PLT are marked as read-only after the process’s initialization
to prevent (accidental or malicious) modifications, however, the malicious actor
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covertly modified the library in such a way that the indirect function resolver is
executed during the process’s initialization, at a time when the GOT and PLT
are still writable. Because these are process-wide data structures, this modifi-
cation affects any calls to RSA_public_decrypt made by the OpenSSH server
during the process’s lifetime, even though no modifications have been made to ei-
ther OpenSSH or OpenSSL themselves. Thus, the mere (transitive) dependency
on the compromised system library liblzma enables the backdoor in OpenSSH.

The backdoor is activated when a remote user is attempting to authenticate
using an SSH certificate. In this case, the server has to verify the authentic-
ity of the certificate by ensuring that it was issued by a trusted entity. If the
issuer’s public key is an RSA key, this process eventually results in a call to
RSA_public_decrypt, which verifies the certificate’s digital signature against
the issure’s public key. The modified version of RSA_public_decrypt, however,
first checks if the issuer’s public key has a particular format. Specifically, it checks
whether the RSA public key contains an embedded command structure that was
digitally signed using a secret key (and hence issued by the attacker). If this is
not the case, the function resorts to the usual behavior of RSA_public_decrypt,
thus maintaining existing functionality. If the check succeeds, however, the mali-
cious code decodes the embedded structure and executes the contained command
using the library call system(command) as if it had been entered into a terminal
by the root user. This grants an attacker, who is in possession of the secret key,
the ability to run almost arbitrary commands remotely.

Formalization. We already gave a formalization of the desired behavior of the
OpenSSH server in Equation 2, however, as described in Section 1, this prop-
erty does not capture deviations from the desired behavior outside of the two
referenced functions and thus does not catch the xz backdoor.

This constitutes the case of a false positive in our methodology from Sec-
tion 2, and is significantly more challenging than identifying false negatives. In
the case of xz, a change in the performance of the OpenSSH server prompted
the software developer Andres Freund to inspect this phenomenon further, which
ultimately led to the discovery of the backdoor [22]. Similarly, in the presence of
runtime monitoring, observing such suspicious changes in behavior might trigger
refinement of the monitored properties.

In Section 1, we already remedied Equation 2 by replacing access with
(do_authenticated(pid) ∨ system(pid))). This refinement was obtained by first
identifying a priviledged access not taken into account so far, followed by weak-
ening the premise of the implication in φ. In this more detailed case study, we
refine this revised property even further, as it relies on monitoring calls to poten-
tially untrusted functions, and it may not be advisable to trust such observations
– neither of the properties would have caught the backdoor in Section 3.3.

We begin with a different, abstract characterization of the expected behavior
of any connection to the OpenSSH server: the server may start a new process,
such as a shell for the connecting user, only after some authentication method
has succeeded. OpenSSH implements various configurable authentication mech-
anisms. At this point, we only take into account three different authentication
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methods (which will prove to be problematic later): we assume that users can use
password-based authentication, public-key authentication using an RSA public
key known to the OpenSSH server, or SSH certificates that were signed by a
trusted certificate authority using an RSA key.

Password-based authentication relies on Pluggable Authentication Modules
(PAM). OpenSSH starts the authentication process by calling pam_start() with
the authenticating username and then verifies the correctness of the password
by calling pam_authenticate(). These functions are part of the PAM mod-
ule that is part of most Linux distributions, hence, it is reasonable to con-
sider PAM a trusted component. Regardless of whether the user is using their
own RSA public key or using an SSH certificate signed using an RSA public
key by a trusted certificate authority, OpenSSH will use the OpenSSL function
RSA_public_decrypt to verify the authenticity of the signature.

Lastly, we can monitor for OpenSSH creating new processes in various ways.
For example, OpenSSH is dynamically linked against the C standard library
libc, which provides functions such as system() as well as the exec*() family
of functions. Thus, we can monitor for calls to these standard library functions.

Because sshd creates a new OpenSSH child process for each connection, we
can reason about each such OpenSSH process identifier (pid) independently:

∀ pid .G(creating_new_process(pid) ⇒ O auth_succeeding(pid)) , (4)

where creating_new_process(pid) ≡ calls_lib_func(pid, libc, system) ∨
calls_lib_func(pid, libc, exec∗),

i.e., we observe standard library calls that execute new processes, and

auth_succeeding(pid)

≡ lib_call_ok(pid, libpam, pam_authenticate) ∨
lib_call_ok(pid, libcrypto, RSA_public_decrypt).

In other words, Equation 4 requires that, for any OpenSSH process, if the process
calls a function that creates a new process, then prior to that event, the process
must have called either pam_authenticate or RSA_public_decrypt and that
call must have succeeded. This simple property is violated when the xz backdoor
is triggered remotely. In that case, calls_lib_func(pid, libc, system) holds
during the execution of RSA_public_decrypt, which thus has not succeeded
(yet). Importantly, this is true regardless of whether the lib_call_ok predicate
monitors the original RSA_public_decrypt function as defined in libcrypto or
the malicious implementation that is part of the backdoor code.

Differential Property Monitoring. We use DejaVu [17] to synthesize a monitor
for the property defined in Equation 4, which we formalize for the tool as follows:6

6 The Past FO-LTL operator O corresponds to the P operator in DejaVu [17].
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1 pred creating_new_process(pid) =
2 calls_lib_func(pid, "libc", "system") |
3 calls_lib_func(pid, "libc", "exec*")
4
5 pred auth_succeeding(pid) =
6 lib_call_ok(pid, "libpam", "pam_authenticate") |
7 lib_call_ok(pid, "libcrypto", "RSA_public_decrypt")
8
9 prop p : forall pid . creating_new_process(pid) -> P auth_succeeding(pid)

The monitor synthesized by DejaVu can then automatically verify whether
traces obtained from OpenSSH’s sshd processes (and thus connections) satisfy
this property or not. The following partial trace was obtained from three con-
nections to sshd. (Note that the CSV-like syntax is DejaVu’s input format.)
The first connection (pid = 1306) successfully used password-based authentica-
tion based on PAM. The third (pid = 1495) uses a trusted RSA public key to
authenticate. The second connection (pid = 1329), however, exploited the xz
backdoor, resulting in a violation of Equation 4.

1 connect,1306
2 lib_call_ok,1306,libpam,pam_authenticate
3 calls_lib_func,1306,libc,exec*
4 connect,1329
5 disconnect,1306
6 calls_lib_func,1329,libc,system
7 disconnect,1329
8 connect,1495
9 lib_call_ok,1495,libcrypto,RSA_public_decrypt

10 calls_lib_func,1495,libc,exec*
11 disconnect,1495

DejaVu correctly and automatically identifies this violation:

1 *** Property p violated on event number 6:
2 #### calls_lib_func(1329,libc,system)

This simple property in Equation 4 significantly improves over Equation 2,
as it detects the xz backdoor. At this point, running DejaVu confirms that
the revised property in Equation 4 indeed identifies the backdoor. To increase
our confidence in the new property, we continue to monitor OpenSSH using the
original property from Equation 2 and the new property in Equation 4 simul-
taneously. Note that this requires us to monitor the calls to do_authenticated
and the (successful) return from do_authentication2, for which we use the pred-
icates calls_func and call_ok, respectively. Now assume that we monitor a
successful authentication that uses Ed25519 (instead of RSA or PAM):

1 connect,1371
2 call_ok,1371,sshd,do_authenticate2
3 calls_func,1371,sshd,do_authenticated
4 calls_lib_func,1371,libc,exec*
5 disconnect,1371

This trace violates the new property in Equation 4 while satisfying the prop-
erty in Equation 2 at the same time, triggering us to inspect the trace closely.
Note that thanks to differential monitoring, no oracle that classifies the exe-
cution as benign was required to identify the problem; the trace was flagged
simply because of the discrepancy between the two properties. An inspection of
the trace indicates that further refinement (case ➀(a)) is required.
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3.5 Case Study 5: XZ Utils Backdoor (Root Access)

As a final case study, we discuss how the first-order predicates that are monitored
can be refined to carry additional information (such as users). Note that the
variable identifying the user in the original template in Equation 1 was replaced
with pid in Equation 2. As demonstrated in Section 3.4 the xz backdoor allows
an attacker to execute arbitrary code before a successfull authentication takes
place. In particular, this code can be executed as root.

Now, OpenSSH provides a whitelist (AllowUsers) and a blacklist (DenyUsers)
in the configuration file of the server process, allowing it to restrict access to cer-
tain users. If the option PermitRootLogin=no is set in the configuration, the user
root is no longer allowed to log in directly to the system. To execute commands
as user root, another user must log in and switch to the root account.

If we exploit the xz backdoor (via xzbot7) to execute sleep 10 remotely
on a system with restricted SSH access (PermitRootLogin=no and DenyUsers
root), an invalid login attempt is registered in the Linux system log files:

1 ... sshd[2888]: Connection from 127.0.0.1 port 55534 on 127.0.0.1 port 22 rdomain ""
2 ... sshd[2888]: User root from 127.0.0.1 not allowed because listed in DenyUsers
3 ... sshd[2888]: Failed unknown for invalid user root from 127.0.0.1 port 55534 ssh2 ...

Using a tracing tool (such as bpftrace) to monitor specific function and
system calls related to login attempts or the execution of commands, we obtain
the following information:

1 syscall_func(5098, ’syscalls’, ’sys_enter_exec*’, admin): xzbot -addr 127.0.0.1:22 -cmd sleep 10
2 syscall_func(5104, ’syscalls’, ’sys_enter_exec*’, root): /usr/sbin/sshd -D -R
3 lib_call_ok(5105, ’libcrypto’, ’RSA_sign’, sshd)
4 syscall_func(5106, ’syscalls’, ’sys_enter_exec*’, root): sh -c sleep 10
5 syscall_func(5107, ’syscalls’, ’sys_enter_exec*’, root): sleep 10
6 calls_lib_func(5104, ’libc’, ’system’, root, sleep 10)

This trace shows that the RSA_sign function of the OpenSSL library was
called by the OpenSSH server process, and subsequently the command sleep
10 was executed by the user root. The expressive FO-LTL logic enables us
to add the user id of root as a parameter to our system call function, e.g,
calls_lib_func(pid, system, root). Hence, in the case where we only care about
the above-mentioned configuration of OpenSSH, it seems tempting to aggres-
sively simplify Equation 4 to

∀ pid .G(¬calls_lib_func(pid, system, root)) (5)

However, differential property monitoring of the properties in Equation 4 and
Equation 5 will quickly help us identify that this rules out the scenario where a
non-root user legitimately uses su to switch to the root account (which passes
the property in Equation 4 but not the one in Equation 5).

Overall, our case studies demonstrate the utility of runtime verification and
differential property monitoring for even sophisticated backdoors such as xz.

7 https://github.com/amlweems/xzbot

https://github.com/amlweems/xzbot
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4 Related Work

Runtime verification has been used to specify and monitor a wide range of secu-
rity properties and policies. Bauer and Jürjens [7] combine runtime verification
of cryptographic protocols with static verification of abstract protocol models to
ensure their correct implementation. Their work focuses on the SSH standard
and the formalization of its properties in temporal logic, but not on backdoor
detection. Signoles et al. [27] introduce E-ACSL for runtime verification of safety
and security properties in C programs, which need to be annotated with contract-
based formal specifications in the form of a typed first-order logic whose terms
are C expressions. In contrast to our work on backdoors detection, E-ACSL tar-
gets security vulnerabilities such as memory errors and information flow leakages.
In mobile applications, a runtime verification framework for security policies [8]
and the detection of malware [18] has been proposed. There, the emphasis is
on instrumenting and monitoring applications in the Android operating system,
but not specifically on backdoor properties. Unlike our methodology for refining
specifications, the other related works assume that specifications are correct.

Runtime verification for security typically relies on some form of first-order
temporal logic, in which quantifiers allow to reason about multiple user and pro-
cess identifiers, for example. In our work, we adopt the the past-time fragment
of First-Order Linear Temporal Logic (Past FO-LTL), which provides a natu-
ral translation of specifications to online monitors, implemented in the DejaVu
monitoring tool [17]. Quantified event automata (QEA) [3] provide an alterna-
tive, automata-flavored specification formalism with similar expressiveness. Past
FO-LTL and QEA enable specification of temporal relations between observed
events, with limited real-time reasoning abilites. To overcome this, Basin et al. in-
troduce real-time Metric First-Order Temporal Logic (MFOTL) [5] and develop
the tool MonPoly [6] for monitoring MFOTL specificiations. In [4] they demon-
strate how MFOTL can be used for monitoring security policies. Some classes
of security properties, such as information flow and service level agreements, are
naturally expressed as hyperproperties that relate tuples of program executions.
Runtime verification of hyperproperties has been recently studies under various
flavors [1,9,16,13,28]. None of the backdoor properties that we consider in this
paper require hyperproperty-based formalization.

In the broader field of backdoor detection, Shoshitaishvili et al. [26] present
firmware analysis via symbolic execution. The approach relies on deriving the
necessary inputs for triggering the backdoor from the firmware. Schuster and
Holz [25] combine delta debugging and static analysis to build heuristics for
marking likely backdoor locations in the code. For complex backdoors, such as
the xz backdoor, discussed in Section 3.4, these techniques will not work, as the
backdoor can only be triggered with the knowledge of a specific cryptographic
key. Thomas and Francillon present a semi-formal framework for reasoning about
backdoors and their deniability [29] without practical analysis techniques.

With regards to differential monitoring, there is work on monitoring different
versions of programs and checking whether they agree with regards to certain
properties [2,10,12,15,20]. In contrast, we focus on different specifications.
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5 Conclusion

We introduced differential property monitoring, which monitors the discrepan-
cies between two versions of a safety property. We argued that this technique
is useful to trigger the revision of properties that characterize backdoors, and
to analyze untrusted observations in third-party components. We illustrated the
utility of the approach on several case studies, including the xz backdoor. Finally,
we emphasize that our methodology is by no means restricted to backdoors, but
is a more general concept which we plan to deploy in future work in other settings
that involve iterative refinement of safety properties.
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