
Aufspaltung neuronaler Netze für
energieeffiziente Edge-KI

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Daniel May, BSc
Matrikelnummer 11809922

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof.in Mag.a rer.soc.oec. Dr.in rer.soc.oec. Ivona Brandić
Mitwirkung: Shashikant Shankar Ilager, M.Tech. PhD

Wien, 22. November 2024
Daniel May Ivona Brandić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Neural network splitting for
energy-efficient Edge-AI

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Daniel May, BSc
Registration Number 11809922

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof.in Mag.a rer.soc.oec. Dr.in rer.soc.oec. Ivona Brandić
Assistance: Shashikant Shankar Ilager, M.Tech. PhD

Vienna, November 22, 2024
Daniel May Ivona Brandić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel May, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 22. November 2024
Daniel May

v

Danksagung

Ich möchte meiner Betreuerin, Professorin Ivona Brandić, meinen aufrichtigen Dank
dafür aussprechen, dass sie mich als ebenbürtiges Mitglied in ihre Forschungsgruppe
aufgenommen hat und mir während meiner gesamten Arbeit unschätzbare Hilfe und
Unterstützung zukommen ließ. Ich bin meinem Co-Betreuer, Shashikant Ilager, sehr
dankbar, der mich von der anfänglichen Themenwahl bis zur Planung der nächsten Schritte
und der Konzeption von Experimenten kontinuierlich beraten hat. Seine Verfügbarkeit
für Besprechungen und sein Engagement, mir zu helfen, das große Ganze im Blick zu
behalten, waren von unschätzbarem Wert. Ich bin auch Alessandro Tundo dankbar, dass
er stets für Diskussionen über Detailfragen zur Verfügung stand und immer bereit war zu
helfen. Dank der Zusammenarbeit und der Unterstützung dieser drei Personen war ich in
der Lage, meine Arbeit bei einer Konferenz einzureichen, wofür ich unendlich dankbar
bin.

Mein Dank gilt auch allen anderen Mitgliedern der HPC-Forschungsgruppe, die mir
immer wieder ihre Hilfe angeboten haben, sei es durch wertvolles Feedback und Kritiken
zu meiner wissenschaftlichen Arbeit oder durch Hilfe im Labor. Ihre Unterstützung in
beiden Bereichen habe ich sehr zu schätzen gewusst.

Ich möchte mich bei meiner Familie bedanken, insbesondere bei meiner Mutter, die
mich während meines gesamten Studiums unterstützt hat. Ebenso dankbar bin ich
meinen Freunden, die mein Leben während meiner Zeit an der Universität bereichert
haben. Schließlich möchte ich meiner Partnerin, deren unglaubliches Verständnis und
Unterstützung mir in stressigen Zeiten geholfen haben, meine herzliche Anerkennung
aussprechen.

Die in dieser Arbeit vorgestellten Experimente wurden mit Hilfe des Grid’5000-Testbeds
durchgeführt, das von einer wissenschaftlichen Interessengruppe unterstützt wird, die
von Inria organisiert wird und an der das CNRS, RENATER und mehrere Universitäten
sowie andere Organisationen beteiligt sind (siehe https://www.grid5000.fr).

Diese Arbeit wurde mit einem netidee-Stipendium gefördert.

Diese Forschung wurde teilweise durch die folgenden Projekte finanziert: Transprecise Edge
Computing (Triton), Österreichischer Wissenschaftsfonds (FWF), DOI: 10.55776/P36870;
Digital Twin for LoRaWAN Agriculture Systems, Steirische Wirtschaftsförderung (SFG),
Ideen!Reich XS 1.000.073.260.

vii

https://www.grid5000.fr

Acknowledgements

My deepest appreciation goes to Professor Ivona Brandić, who accepted me into her
research team as an equal and offered essential guidance and support throughout my
thesis journey. I am tremendously grateful to my co-advisor, Shashikant Ilager, who
was consistently present from the moment I chose my topic through to planning future
steps and experimental design. His readiness for meetings and commitment to helping
me keep the overarching goals in perspective were irreplaceable. I also thank Alessandro
Tundo for being persistently available for discussions on detailed issues and his constant
willingness to assist. The combined collaboration and support of these three individuals
enabled me to submit my work to a conference, for which I am deeply grateful.

I am also grateful to everyone in the HPC Research Group for their unfailing support,
be it through offering critical insights and critiques on my academic writing or aiding me
in the laboratory. Their help in these aspects has been greatly appreciated.

My deepest gratitude goes to my family, with particular recognition to my mother, for her
support during my academic journey. I am also grateful to my friends, whose presence
has greatly improved my university experience. Lastly, my sincere thanks go to my
partner, whose remarkable patience and encouragement have been invaluable during
challenging periods.

Experiments presented in this thesis were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see https://www.grid5000.
fr).

This work was supported by a netidee scholarship.

This research has been partially funded through the projects: Transprecise Edge Com-
puting (Triton), Austrian Science Fund (FWF), DOI: 10.55776/P36870; Digital Twin for
LoRaWAN Agriculture Systems, Steirische Wirtschaftsförderung (SFG), Ideen!Reich XS
1.000.073.260.

ix

https://www.grid5000.fr
https://www.grid5000.fr

Kurzfassung

Der Einsatz von KI-Modellen auf ressourcenbeschränkten Edge-Geräten wird durch
begrenzte Rechenkapazitäten und hohen Energiebedarf erschwert. Split Computing bietet
eine Lösung, bei der große neuronale Netze aufgeteilt werden und eine partielle Berechnung
sowohl auf Edge- als auch auf Cloud-Geräten ermöglicht wird, wobei ein Gleichgewicht
zwischen Energieeffizienz und Latenzanforderungen angestrebt wird. Die Bestimmung
der optimalen Split-Ebene und Hardwarekonfigurationen ist jedoch nicht trivial. Diese
Komplexität ergibt sich aus dem großen Konfigurationsraum, nichtlinearen Abhängigkei-
ten zwischen Software- und Hardwareparametern, heterogenen Hardwareeigenschaften
und dynamischen Lastbedingungen.

Um diese Herausforderungen zu bewältigen, schlagen wir DynaSplit vor, ein umfassen-
des zweistufiges Hardware-Software-Optimierungsmodell. DynaSplit konfiguriert dyna-
misch sowohl Software-Parameter (d.h. die Split-Ebene) als auch Hardware-Einstellungen
(z.B. Beschleunigernutzung, CPU-Frequenz) zur Leistungsoptimierung. In der Offline
Phase gehen wir das Problem mit einem multikriteriellen Optimierungsansatz an, indem
wir einen meta-heuristischen Algorithmus nutzen, um Pareto-optimale Konfigurationen
zu finden. In der Online-Phase identifiziert ein Scheduling-Algorithmus die am bes-
ten geeigneten Einstellungen für jede eingehende Inferenzanfrage, um einen minimalen
Energieverbrauch zu gewährleisten und gleichzeitig die durch die Quality of Service
(QoS)-Vorgaben der Anwendung definierten Latenzanforderungen zu erfüllen.

Unsere Implementierung von DynaSplit, die an einem realen Prototyp unter Verwen-
dung gängiger vortrainierter KI-Modelle getestet wurde, zeigt erhebliche Energieeinspa-
rungen und Leistungsverbesserungen. Experimentelle Ergebnisse zeigen, dass DynaSplit
den Energieverbrauch im Vergleich zu reinen Cloud-Berechnungen um bis zu 72% redu-
zieren kann und ca. 90% der benutzerspezifischen Latenzanforderungen erfüllt, was eine
deutliche Überlegenheit gegenüber herkömmlichen Baselines darstellt.

xi

Abstract

The use of artificial intelligence (AI) models on edge devices with limited resources faces
obstacles due to insufficient computational capacity and excessive energy consumption.
Split computing addresses this issue by dividing neural networks (NNs) so that some
computations occur on edge devices and some in the cloud. This approach manages
energy efficiency and latency demands. However, finding the best layer to split and
correct hardware setups is complex. This difficulty is due to a vast array of configurations,
non-linear interactions between software and hardware, diverse hardware features, and
fluctuating workload scenarios.

In response to these hurdles, we introduce DynaSplit, an extensive framework to
optimize hardware and software in two distinct phases. DynaSplit dynamically adjusts
software components, such as the split layer, along with hardware configurations such
as accelerator usage and CPU frequency, to enhance performance. During the Offline
Phase, we tackle the optimization issue employing a multi-objective approach with a
meta-heuristic algorithm to find Pareto-optimal setups. Meanwhile, the Online Phase
employs a scheduling algorithm to select the optimal settings for every incoming inference
task, thereby minimizing energy usage while adhering to the latency thresholds imposed
by the application’s quality of service (QoS) constraints.

By deploying DynaSplit on a real-world prototype with widely-used pre-trained AI
models, we achieved notable energy efficiency while meeting application requirements.
Our experimental data indicate that DynaSplit can reduce energy usage by as much as
72% in contrast to cloud-only solutions and can meet around 90% of user-defined latency
targets, thus greatly exceeding baselines.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Context & Motivation . 1
1.2 Research Problem & Objectives . 3
1.3 Methodological Approach . 4
1.4 Outline . 5

2 Background and Preliminaries 7
2.1 Cloud and Edge Computing . 7
2.2 Artificial Intelligence . 10
2.3 Edge AI: Opportunities and Deployment Challenges 13
2.4 Techniques for Addressing Edge AI Deployment Limitations 15
2.5 Split Computing . 17

3 Related Work 21
3.1 Split Computing with Bottleneck Injection 21
3.2 Split Computing without Architectural Modifications 22
3.3 Summary . 24

4 Definitions and Problem Formulation 27
4.1 Notation . 27
4.2 Model Partitioning . 27
4.3 Configuration Space . 28
4.4 Latency Model . 28
4.5 Energy Model . 29
4.6 Optimization Problem . 30

5 DynaSplit: Methodology and Solution Approach 33
5.1 Preliminary Observations . 33

xv

5.2 System Overview . 36
5.3 Offline Phase . 38
5.4 Online Phase . 41

6 Implementation 45

7 Evaluation 49
7.1 Experimental Setup . 49
7.2 Experimental Plan . 51
7.3 Testbed Experiment Results . 54
7.4 Simulation Experiment Results . 60
7.5 Overhead Analysis . 63
7.6 Limitations . 65

8 Conclusions and Future Directions 67
8.1 Conclusion . 67
8.2 Future Directions . 68

Overview of Generative AI Tools Used 71

List of Figures 73

List of Tables 75

List of Algorithms 77

Acronyms 79

Bibliography 81

CHAPTER 1
Introduction

This thesis addresses the challenges of deploying resource-intensive deep neural networks
(DNNs) in constrained environments, focusing on energy-efficient, latency-aware solutions
through split computing and hardware-software co-design.

1.1 Context & Motivation
Deep neural networks (DNNs) have revolutionized the field of artificial intelligence (AI),
driving advancements in areas such as image classification, natural language processing,
and autonomous systems [ZMB+21, RN20]. These models are inspired by the human
brain and consist of interconnected layers of artificial neurons designed to identify patterns
and make predictions from data [GBC16]. During the past decade, improvements in
computational power, data availability, and algorithm design have enabled DNNs to
achieve state-of-the-art performance on numerous tasks [YHPC18, AGH20]. Their ability
to process complex data and generate accurate insights has made them indispensable in
modern AI applications.

Despite their remarkable capabilities, DNNs are computationally intensive and require
substantial hardware resources for both training and inference [HTR22, DBMC22]. Al-
though the inference phase, where a trained model is executed to make predictions, is less
demanding than training, it remains resource intensive due to the size and complexity
of modern models [BCCN18]. This is particularly critical because models are typically
trained once but widely deployed, with inference operations occurring repeatedly and
at scale, especially in publicly available AI services. The frequent and widespread use
of inference amplifies its resource demands, leading to significant energy consumption
and contributing to growing concerns about the environmental impact of AI technologies.
Studies show that the carbon footprint of deploying DNNs, particularly in large-scale
cloud infrastructures, can be substantial [SDSE20, SGM19]. These challenges underscore
the need for energy-efficient deployment strategies.

1

1. Introduction

Edge applications have become increasingly intelligent, using advanced artificial intelli-
gence algorithms to enable real-time decision making and processing [WHL+20, LMP+21,
LLW19, SSWP21]. This trend, referred to as Edge AI, allows intelligent applications at
the edge. It involves deploying DNNs on edge devices such as smartphones, IoT sensors,
and embedded systems. However, deploying these models on edge devices is challenging
due to their resource-constrained nature, with limited computational power, memory,
and energy budgets [WHL+20, CJLF16, CLM+21]. Unlike centralized cloud data centers,
which offer scalable resources [AFG+10], edge devices must handle inference tasks in
real time while minimizing latency and energy usage. This makes direct deployment of
resource-intensive DNNs on edge devices infeasible for many applications. For example,
autonomous vehicles and real-time healthcare monitoring require ultra-low latency to
ensure timely responses, yet these applications often involve complex models that exceed
the capabilities of edge hardware [PCT+20].

To address the limitation of deploying DNNs on constrained hardware, split comput-
ing has emerged as a promising approach. Split computing involves partitioning a
DNN into segments that are executed across different devices, such as edge and cloud
resources [MLR23, KHG+17]. For example, the initial layers of a network might be
processed on the edge device, capturing and compressing raw data into intermediate
features, while the remaining layers run on the cloud, leveraging its computational power.
By distributing the computation, split computing can balance the trade-offs between
latency, energy consumption, and inference accuracy [LFEF24, ZZL+24, MTIB24].

However, achieving optimal performance in split computing is not straightforward. The
choice of split point, determining which layers run on the edge versus the cloud, has
a significant impact on latency and energy consumption [KHG+17]. This relationship
is highly non-linear and is influenced by factors such as the size of intermediate out-
puts, network bandwidth, and the workload characteristics of edge devices and cloud
devices [EAP21]. Moreover, existing solutions in split computing often fail to incorpo-
rate hardware parameter tuning into their optimization processes. Parameters such as
accelerator usage (TPU, GPU) and dynamic voltage and frequency scaling (DVFS) can
drastically affect energy efficiency and latency [TWWC19, HMS21], but are typically
overlooked in split computing frameworks.

Although some approaches dynamically adapt to runtime variations and QoS requirements,
they often optimize only the software-level configurations, neglecting the potential benefits
of a combined hardware-software co-design. Addressing this gap, this thesis proposes a
comprehensive framework that integrates hardware parameter tuning into split computing
optimization. By jointly considering hardware and software interactions, the framework
aims to provide energy-efficient DNN inference while meeting strict latency and accuracy
requirements.

2

1.2. Research Problem & Objectives

1.2 Research Problem & Objectives

The deployment of DNNs on edge devices is challenging due to their high computational
and energy demands. Edge devices often lack the resources required for efficient inference,
making it difficult to balance performance, energy efficiency, and accuracy.

Split computing offers a potential solution by dividing the computational workload
between edge devices and the cloud. This approach reduces the resource burden on the
edge device while leveraging the computational power of the cloud. However, selecting
the optimal split point is challenging because DNN computations do not scale linearly
across layers, and their performance depends both on the software parameters, such as
the NN architecture, and hardware capabilities, such as processing power and memory.

In addition to split selection, hardware configurations such as CPU frequency, GPU
utilization, and network conditions play a crucial role in determining the energy con-
sumption and latency of inference. The dynamic nature of runtime conditions, combined
with strict QoS requirements like latency deadlines, further complicates the optimization
process.

This work aims to address these challenges by developing an energy-aware framework for
split computing. The objectives are as follows.

• Identify critical parameters that influence the energy consumption and latency of
DNN inference.

• Determine optimal split points to divide computation between edge devices and
the cloud.

• Dynamically configure hardware parameters to meet QoS requirements while en-
suring energy efficiency.

The research questions addressed in this thesis are as follows:

RQ1: What are the appropriate strategies for splitting DNNs used in image classification?

RQ2: How do hardware parameters influence the trade-offs between energy consumption,
accuracy, and latency in DNN inference?

RQ3: How can we jointly optimize model splitting and hardware configurations to meet
energy and latency requirements for DNN inference?

A preliminary version of this work has been published as a preprint [MTIB24], which
forms the basis for this thesis. Building on this previous work, the thesis provides an
expanded background, more detailed analyses, and refined methodologies to address the
stated research questions.

3

1. Introduction

1.3 Methodological Approach

This thesis uses a structured methodology to address the research questions presented,
integrating a systematic review of the literature, a motivational study, the development
of a software artifact and comprehensive evaluations. The approach ensures a consistent
narrative, from understanding the problem space to delivering and validating a solution.

1.3.1 Literature Review: Establishing a Foundation

The first step involves conducting a systematic literature review inspired by the method-
ology of Kitchenham and Charters [KC07]. This review focuses on strategies for splitting
deep neural networks (DNNs) in image classification tasks and their impact on energy
efficiency and latency. Using well-defined search queries across major digital repositories,
such as the ACM Digital Library, IEEE Xplore, and Google Scholar, this review seeks to
identify existing approaches, challenges, and knowledge gaps. Special attention is paid to
techniques that balance trade-offs between energy consumption, latency, and accuracy, as
these are crucial to optimizing DNN inference in resource-constrained edge environments.
The insights gained from this review directly address RQ1 by identifying appropriate
DNN splitting strategies.

1.3.2 Motivational Study: Empirical Insights on Hardware Parameters

Based on the literature review, a motivational study will be conducted to provide empirical
evidence on how various hardware configurations influence energy consumption, latency,
and accuracy during DNN inference. This study bridges the gap between theory and
practical deployment, focusing on:

• Accelerators: Analyzing the performance of GPUs and TPUs under varying work-
loads.

• DVFS: Investigating the effects of adjusting CPU and TPU frequencies on inference
metrics.

• Split Points: Exploring how different neural network splitting configurations affect
energy, latency, and accuracy.

Through controlled experiments [GL87] in the RUCON1 lab at TU Wien, which offers
edge devices and energy measurement tools, and the Grid50002 research cloud testbed, the
study will simulate realistic conditions to identify key parameters that can be optimized
in the DNN inference. These findings address RQ2, laying the groundwork for designing
an optimization strategy by identifying tunable parameters and their trade-offs.

1http://rucon.ec.tuwien.ac.at
2https://www.grid5000.fr/w/Grid5000:Home

4

http://rucon.ec.tuwien.ac.at
https://www.grid5000.fr/w/Grid5000:Home

1.4. Outline

1.3.3 Optimization and Artifact Development

The insights from the motivational study will inform the design and implementation
of a software artifact, aligned with the design science research framework of Hevner et
al. [HMPR04]. This artifact will serve as a prototype system to jointly optimize DNN
splitting strategies and hardware configurations. By dynamically selecting the split point
and tuning the hardware parameters, the system aims to meet specific energy and latency
requirements, addressing RQ3.

The artifact leverages multi-objective optimization techniques to balance energy efficiency
with latency constraints, ensuring robust performance across diverse workloads. The
implementation will consider both edge and cloud environments, integrating mechanisms
for adaptability and scalability in real-world scenarios.

1.3.4 Evaluation: Comparison against baselines

To validate the effectiveness of the artifact developed, a detailed evaluation will be carried
out. This includes:

1. Quantitative Analysis: Measuring energy, latency and accuracy as the artifact
dynamically selects split points and hardware settings to meet QoS requirements
for user requests.

2. Baseline Comparisons: Comparing the performance of the artifact against tradi-
tional approaches, such as computation based solely on the cloud or edge, under
identical conditions.

3. Scalability Testing: Simulating high workloads to assess the system’s ability to
maintain performance under increasing demands.

The RUCON lab and the Grid5000 research cloud testbed provide an ideal testing envi-
ronment, ensuring reliable measurements and repeatable experiments. These evaluations
will highlight the advantages of the proposed joint optimization framework over existing
solutions.

This methodical approach forms a coherent workflow: understanding the state-of-the-art,
producing empirical evidence, crafting and applying a customized solution, and rigorously
testing its effectiveness. This process systematically covers research questions, aiming to
improve DNN inference in resource-constrained settings.

1.4 Outline
This thesis is structured to build a clear narrative from the basic concepts to the evaluation
and implications of the proposed framework. It begins by laying the foundation and
systematically progresses toward addressing the research questions.

5

1. Introduction

The discussion begins in Chapter 2, where the essential foundations for this work are
established. The topics include the principles of edge and cloud computing, the basics of
AI and ML, and the challenges faced in deploying models on edge devices. This chapter
also explores existing techniques for overcoming these challenges, concluding with a
detailed introduction to split computing, which serves as the basis for the subsequent
chapters.

Building on this groundwork, Chapter 3 places the thesis within a broader research
context. Reviews prior work on energy-aware split computing, critically evaluating
existing approaches, and identifying their limitations. This analysis highlights the gaps
that this thesis aims to address, setting the stage for our contributions.

With the context established, Chapter 4 formalizes the problem addressed in this thesis.
Key terms are defined, and the precise formulation of the research problem is detailed,
ensuring clarity and a focused direction for the solution.

The core of this thesis is presented in Chapter 5, which introduces the DynaSplit
framework. This chapter outlines the design of the proposed solution, detailing the
optimization strategy employed during the Offline Phase and the dynamic configuration
methods applied in the Online Phase to adapt to user requirements.

To translate the conceptual framework into a practical system, Chapter 6 discusses
the implementation of DynaSplit. It describes the software setup, addressing the
development challenges encountered and the strategies used to overcome them.

The effectiveness of the proposed solution is demonstrated in Chapter 7, which presents
a detailed evaluation of the framework. This chapter includes the experimental setup,
testbed design, and simulation studies. Key performance metrics, such as energy efficiency
and latency, are analyzed and the limitations of the approach are critically assessed to
provide a comprehensive understanding of its strengths and areas of improvement.

Finally, Chapter 8 concludes the thesis by summarizing the main findings and describing
potential future research directions. The chapter emphasizes the broader impact of this
work and its contribution to advancing the field of energy-aware split computing.

This structure ensures a logical progression, connecting foundational insights, theoretical
contributions, and practical implementations to provide a holistic overview that addresses
research questions and highlights the significance of the DynaSplit framework.

6

CHAPTER 2
Background and Preliminaries

This chapter presents a comprehensive summary of essential principles associated with the
DynaSplit framework. It explores Cloud and Edge Computing, presents an introduction
to artificial intelligence (AI) and its use cases, examines the challenges and solutions
of Edge AI, and wraps up by discussing Split Computing as a practical approach for
addressing these challenges.

2.1 Cloud and Edge Computing

Cloud computing refers to the provision of computing resources and applications over the
Internet [AFG+10]. These resources are categorized into three primary service models:

• Infrastructure as a Service (IaaS): Provides computing resources such as servers,
storage, and networks, enabling users to deploy and manage their software, operating
systems, and applications.

• Platform as a Service (PaaS): Offers a platform for developers to build, test,
and deploy applications without managing the underlying hardware and software
infrastructure.

• Software as a Service (SaaS): Delivers software applications over the Internet,
allowing users to access them on-demand without the need for installation or
maintenance.

These service models are often integrated within cloud computing environments, making
their boundaries sometimes indistinct. For simplicity, they are jointly referred to under
the umbrella of “cloud computing.”

7

2. Background and Preliminaries

Cloud services are typically centralized and offered through remote data centers, which
host the hardware and software infrastructure. The development of large-scale, low-cost,
centralized data centers has been a key driver in the rise of cloud computing, enabling
significantly reduced costs and higher efficiency compared to traditional decentralized
IT systems [AFG+10]. Public cloud solutions, accessible to the general public, leverage
economies of scale to further enhance cost-efficiency.

Cloud computing offers several advantages due to its centralized architecture [AFG+10,
BVS13]:

• Scalability: The cloud allows for smooth resource scaling throughout the computing
stack, adapting to workload variations without needing physical infrastructure
investments.

• Cost Efficiency: Cloud computing shifts the IT infrastructure to a pay-as-you-go
model, lowering upfront investments and maintenance costs by letting the cloud
service providers handle the infrastructure.

• On-Demand Access and Flexibility: Users can access cloud resources on-demand,
enabling rapid scaling to meet demand without prior commitments.

• Global Accessibility: Cloud services can be accessed from anywhere and any device
with an internet connection, enhancing collaboration and productivity.

The cloud market is dominated by some vendors such as Amazon Web Services, Microsoft
Azure and Google Cloud, which hold the highest market share in the cloud market,
which globally reported revenue in Q3 2024 of more than $84 billion [SRG24]. This
infrastructure has enabled transformative applications in numerous domains, including
real-time health monitoring systems that support remote diagnostics, large-scale satellite
image processing for environmental and disaster analysis, and powerful data analytics
tools that accelerate scientific research [BVS13]. These advancements highlight the role
of the cloud in driving innovation by making high-performance computing accessible and
adaptable to a wide range of fields.

As cloud computing drives innovation with centralized, high-performance resources,
the demand for local processing has led to the development of edge computing. Edge
computing is a paradigm aimed at performing data processing close to its origin [SCZ+16].
Unlike traditional cloud computing, which depends on centralized data centers, edge
computing allows devices or nodes near the data source (such as sensors, cloudlets, or
gateways) to process data directly. This approach effectively minimizes latency, reduces
bandwidth usage, and improves data privacy, particularly in Internet of Things (IoT)
and mobile computing situations [Sat17].

Edge computing offers several advantages over centralized cloud computing, as described
in [SCZ+16, Sat17]:

8

2.1. Cloud and Edge Computing

• Reduced Latency: Processing data closer to its source minimizes network delays,
which is essential for time-sensitive applications such as augmented reality (AR)
and autonomous driving.

• Optimized Bandwidth Use: By decreasing the need to send extensive data streams
to the cloud, edge computing conserves bandwidth, especially useful in high-data
scenarios such as video analytics and IoT sensor networks.

• Enhanced Privacy and Security: Local processing allows sensitive data to be filtered
or anonymized before it reaches the cloud, offering better privacy control.

• Reliability and Resilience: With edge devices capable of functioning independently
from the cloud, systems become more robust against network disruptions.

With the advantage of reduced latency, edge computing enables innovative applications in
fields such as autonomous vehicles and real-time video analytics. Localized processing can
also improve energy efficiency, especially for battery-operated IoT devices, by minimizing
data transfer demands [SCZ+16]. Furthermore, collaborative edge networks allow multiple
edge nodes to share resources and insights, enhancing both robustness and scalability in
systems such as smart cities [SCZ+16]. However, challenges remain, including ensuring
data privacy, achieving interoperability between various devices, and managing the limited
resources of distributed edge nodes [Sat17].

After examining cloud and edge computing, it becomes crucial to acknowledge the concept
of the edge-cloud continuum. This idea introduces a range of computational resources that
spans from end-user devices to central cloud data centers. Instead of simply classifying
resources as cloud or edge, this continuum offers various tiers, starting from the device
edge where user devices handle computations, advancing through the gateway edge and
regional data centers, to remote cloud data centers [AZTS18, YLH+18]. Distinctive
features, user proximity, and inherent resource constraints characterize each level within
this spectrum, thereby facilitating more refined and adaptable computing strategies.
In Figure 2.1 we can see an example visualization of this continuum, showcasing the
hierarchical organization. It shows the inner-edge, middle-edge, and outer-edge layers,
highlighting their roles and the typical devices associated with each layer.

The edge-cloud continuum aims to enable more precise trade-offs among performance
objectives such as latency, energy efficiency, and computing power. To illustrate, while
the device edge minimizes latency, its processing capabilities are often constrained.
Conversely, cloud data centers deliver substantial processing strength but experience
increased latency due to their remote location from the user. By utilizing intermediate
tiers, like the gateway edge and regional data centers, tasks can be allocated dynamically
in real time, optimizing for low latency, energy conservation, or heightened processing
capacity as required [YLH+18]. This stratified strategy allows for a wide array of
trade-offs that can be customized to meet the specific needs of each application.

9

2. Background and Preliminaries

Figure 2.1: An example of the layered architecture of the edge-cloud continuum as shown
by [CSB19].

This continuum-based approach proves to be particularly advantageous for applications in
real-time Internet of Things (IoT), augmented reality (AR), and connected vehicles. These
scenarios experience varying demands for low latency, energy efficiency, and processing
power. For instance, in AR, data processing that occurs instantly at the Gateway Edge
is crucial for ensuring quick interactions. Meanwhile, analytics that are not immediately
pressing can be performed further along the continuum. This method facilitates the
effective allocation of tasks and enhances the overall user experience [AZTS18, YLH+18].

In summary, cloud and edge computing offer complementary benefits: cloud comput-
ing provides scalable, cost-effective resources but can suffer from high latency, while
edge computing reduces latency by processing data locally, although with limited re-
sources [AFG+10, SCZ+16]. The edge-cloud continuum integrates both approaches,
spanning layers from the device edge to cloud data centers, allowing dynamic trade-offs
between latency, energy, and computational power [AZTS18, YLH+18]. This layered
model supports various applications such as IoT and AR, where efficient and adaptable
computing is essential.

2.2 Artificial Intelligence
The domain of artificial intelligence (AI) aims at the creation of systems capable of
replicating human intelligence in order to undertake tasks such as perception, decision-
making, and problem-solving [RN20]. AI integrates a variety of methodologies, ranging
from traditional rule-based systems to modern innovations in machine learning (ML)

10

2.2. Artificial Intelligence

and deep learning (DL). This enables computers to process intricate and frequently
unstructured data in a manner that seems intelligent to humans. Additionally, AI
encompasses knowledge representation and automated reasoning, which empowers systems
to deduce new insights and make informed decisions utilizing available data [RN20].

The field of machine learning (ML) represents a specialized area within AI, dedicated to
the development of algorithms that can learn from data and make predictions. Unlike
traditional approaches that rely on predefined rules, ML systems adjust and evolve by
identifying patterns within the data, improving their performance as they encounter new
datasets [RN20]. The function of ML is to enable systems to acquire data representations,
which are crucial for activities such as classification and regression [GBC16].

Within ML, deep learning (DL) represents a specialized area that takes advantage of
neural networks with multiple layers, commonly known as deep neural networks, to
analyze and comprehend data. DL models have revolutionized areas such as image
recognition, natural language processing, and speech analysis by efficiently managing
large datasets with minimal need for manual feature engineering [RN20, GBC16]. DL
is characterized as the approach through which a machine learns to conceptualize the
world in hierarchical terms, beginning from unprocessed data and gradually revealing
increasingly abstract features as data flow through various layers of the network [GBC16].

Although the general objective of AI is to realize intelligent behavior, it is ML that acts as
the means to learn from data, while DL employs a neural network strategy with multiple
layers, essential for handling high-dimensional data. This differentiation naturally leads
us to the importance of neural networks, which serve as the basis for DL models.

Neural networks serve as computational models that draw inspiration from the complex
interconnected structure of human brain neurons. A fundamental model in this field was
brought forward by McCulloch and Pitts in 1943, where they conceptualized the neuron
as a “threshold unit”. This neuron, depicted in Figure 2.2a, is designed to receive input
from various sources, with each input xi having a corresponding weight wi associated
with it [MP43]. The neuron computes a weighted sum, denoted as

∑︁N
i=1 wixi. If this

resulting sum exceeds a certain pre-established threshold t, the neuron generates an
output of 1, if not, the output remains 0 [Sch15]. Subsequently, this threshold model
was enhanced by integrating smoother activation functions, such as the sigmoid function.
This integration enables the production of continuous outputs and enables training using
gradient-based methods [Sch15].

Modern neural networks are constructed around this principle by structuring neurons
across several distinct layers, namely: the input layer, hidden layers, and the output layer.
Take, for example, a basic feed-forward network depicted in Figure 2.2b. It possesses
an input layer receiving data, one or more hidden layers that process the data through
connections that are weighted accordingly, and an output layer that yields the final result.
Within each hidden layer, an activation function, such as Rectified Linear Unit (ReLu),
is employed. This function integrates non-linearity into the network, thus allowing it to
recognize and comprehend complex patterns present within the data [RN20].

11

2. Background and Preliminaries

(a) McCulloch-Pitts neuron model (b) Feed-forward network

Figure 2.2: Basic neural network concepts [Kro08].

Networks distinguished by their numerous hidden layers are called deep neural networks
(DNNs). They enable intricate data representations and serve as the basis for complex
AI applications. Different variants, including convolutional neural networks (CNNs), are
particularly effective in handling image processing tasks. Recurrent neural networks
(RNNs) are tailored for analyzing sequential data, while transformer architectures have
brought significant advances to natural language processing [Sch15, VSP+17]. These
deep network structures serve as the basis for a range of AI systems, highlighting their
important role in various technological domains.

AI systems have become essential tools in a wide range of applications. In the realm of
classification, DNNs are utilized to categorize various types of data, such as organizing
emails or diagnosing medical images. Object detection, which integrates classification with
the ability to locate objects, is widely used in both autonomous vehicles and surveillance
systems, allowing the real-time identification and tracking of objects [GDDM14]. In the
field of natural language processing, AI models play a crucial role in understanding and
generating human language, thus empowering applications such as machine translation
and sentiment analysis [VSP+17]. In addition, speech recognition systems capitalize on
these networks to convert spoken language into text with high accuracy. Meanwhile,
recommendation systems customize content for users based on their activity, increasing
user engagement on digital platforms [YHC+18]. Together, these diverse applications
highlight the broad applicability and significant influence of AI-driven technologies in
our daily lives.

The extensive use of AI models, particularly DNNs with their complex architectures,
results in substantial energy consumption during both the training and inference stages.
In particular, the training phase is notably energy-intensive as it typically involves
processing large datasets and managing millions of parameters. As an example, recent
research indicates that training a single deep learning model can emit as much CO2
as five cars would over their entire lifetime, highlighting the environmental impact of
modern AI research [SGM19]. Furthermore, Schwartz et al. propose the idea of “Green
AI”, stressing the need to focus on creating energy-efficient AI models and strategies
to reduce environmental issues arising from large-scale training [SDSE20]. The energy

12

2.3. Edge AI: Opportunities and Deployment Challenges

demands are even more pronounced in large and cutting-edge models, which requires
vast computational resources and infrastructure [SGM19].

The substantial energy requirements related to the training and inference processes in AI
highlight the importance of focusing on efficiency during model design and deployment.
Taking actions to mitigate this energy footprint is vital not only from an environmental
responsibility point of view, but also as AI systems become increasingly widespread. In
summary, tackling these energy issues will become even more critical as AI integrates
into environments such as edge computing, where resource constraints highlight the need
for sustainable AI deployment strategies.

2.3 Edge AI: Opportunities and Deployment Challenges
This section explores the opportunities, challenges, and hardware factors influencing
Edge AI deployment.

2.3.1 Opportunities of Edge AI

Edge AI refers to the integration of AI with edge computing, involving the use of AI
methodologies on edge devices to provide localized intelligence, improve response time,
and maintain data privacy [DPM+22]. This approach facilitates a novel category of
intelligent applications capable of functioning autonomously by performing data analysis
proximate to the data source. Thus, an increasing number of edge applications are
integrating artificial intelligence (AI) features directly into edge devices, improving the
data analysis capabilities at the edge of the network [LMP+21, LLW19, SSWP21]. Edge
AI applications occur in a diverse range of fields, such as autonomous driving, healthcare,
smart manufacturing, and environmental monitoring, where the capacity for real-time data
analysis and prediction is crucial to system functionality and responsiveness [WHL+20,
DZF+20]. In these scenarios, incorporating machine learning (ML) models enables
information to be processed locally on devices, thus minimizing latency and improving
privacy by limiting the need to transfer data to centralized cloud servers.

Implementing AI functionalities at the edge allows faster actions and insights in scenarios
where real-time decisions are paramount [WHL+20]. Moreover, edge AI can decrease
network load, thus reducing the need for bandwidth and cutting down operational
expenses by shifting computational tasks from centralized cloud infrastructures to nearby
edge nodes [DZF+20].

2.3.2 Challenges in Edge AI Deployment

Deploying AI models on the edge presents several difficulties due to typical constraints
of the edge environment. In particular, edge nodes are generally equipped with fewer
computational resources, such as less processing power, insufficient memory, and storage,
compared to cloud servers [WHL+20, CJLF16, CLM+21]. This poses a significant
challenge for AI models, which are increasingly complex and demanding in terms of

13

2. Background and Preliminaries

resources, especially deep neural networks (DNNs) that comprise millions of parameters.
As a result, edge AI needs to manage the computational requirements for model inference
while dealing with the resource limitations present at the edge.

Power limitations and potential unreliability, particularly in remote or mobile settings,
add to the resource constraints at the edge [WHL+20]. To maintain reliable operation,
energy-efficient inference methods designed specifically for edge devices must be devel-
oped [CLM+21]. Overcoming these constraints requires optimizing hardware and software
to improve the performance and efficiency of edge AI applications. This optimization is
crucial to the successful deployment of AI at the edge, addressing the inherent resource
limitations of the edge nodes for effective and scalable AI use in real settings [DZF+20].

Furthermore, the workloads on edge devices are dynamic, with users often requesting
varying QoS in terms of latency and quality of inference [ZWZ+23]. This variability re-
quires satisfying diverse service-level agreement (SLA) requirements, further complicating
the optimization process for effective and scalable AI deployment in real-world scenarios.

2.3.3 System-Level Factors Influencing Edge AI Performance

The deployment of AI models on edge devices is shaped by hardware choices and
configurations that affect energy efficiency, latency, and inference accuracy. This section
explores the role of edge AI accelerators, trends in their performance, and hardware
configuration knobs used to optimize resource use.

Edge AI accelerators, such as Google’s Coral Edge TPU, NVIDIA’s Jetson Nano, and
Apple’s Neural Engine, are designed to perform DNN inference efficiently under strict
power budgets. For example, the Jetson Nano achieves up to 472 GOPS at just 5 to 10
watts, making it suitable for low-power applications [LL20, HMS21]. These accelerators
enable real-time tasks like object detection and classification, while reducing reliance on
cloud resources. However, as models grow in size, the minimal improvement in accuracy
comes at a disproportionately higher energy cost [HMS21].

Recent evaluations of DNN inference on edge accelerators reveal that lightweight models,
such as MobileNet and EfficientNet, provide better accuracy per joule than larger
architectures such as ResNet50 and VGG [HMS21]. For example, while ResNet50 achieves
higher accuracy, its energy consumption makes it less suitable for energy-constrained
environments. These findings highlight the need for careful model selection based on
application requirements and hardware capabilities.

Beyond model selection, hardware configuration plays a critical role in optimizing edge AI
performance. Dynamic voltage and frequency scaling (DVFS), a widely used technique to
balance performance and energy efficiency, dynamically adjusts CPU or GPU frequencies
dynamically. Studies show that optimizing GPU frequencies can reduce energy consump-
tion by up to 26.4% during inference [TWWC19]. Higher GPU frequencies generally
improve latency, but diminishing returns at extreme settings and memory bottlenecks
require the finding of an optimal balance [TWWC19, DRL+23].

14

2.4. Techniques for Addressing Edge AI Deployment Limitations

On devices like NVIDIA’s Jetson Nano, tuning the CPU and GPU frequencies together
reveals additional energy savings opportunities [DRL+23]. However, these optimizations
must account for workload characteristics, as the most energy-efficient configuration often
depends on the specific DNN and its computational requirements.

These insights into edge accelerators and hardware configurations underscore their
importance in overcoming resource constraints and achieving efficient AI inference. In
the next section, we discuss complementary techniques, such as model compression and
workload distribution, which further address the challenges of deploying AI at the edge.

2.4 Techniques for Addressing Edge AI Deployment
Limitations

To mitigate the challenges of deploying AI models on resource-constrained edge devices,
two primary strategies have been developed: improving on-device computation and
distributing workloads across multiple devices [CR19]. These approaches aim to optimize
the use of available resources while maintaining acceptable performance levels in terms
of accuracy, latency, and energy efficiency.

2.4.1 On-Device Computation

When talking about on-device computation, we focus on enabling edge devices to inde-
pendently perform inference by optimizing AI models to meet the constraints of their
hardware and power environments. This includes the development of more efficient model
designs and the application of model compression techniques [CR19, MBCM22].

Efficient Model Design

The first approach, efficient model design, prioritizes reducing the computational and mem-
ory requirements of AI models without significantly sacrificing their accuracy. A prime
example is the MobileNets family of architectures [HZC+17, SHZ+18, HPA+19, QLD+24],
which use depthwise separable convolutions and inverted residual blocks to dramatically
decrease the number of parameters and floating-point operations (FLOPs). MobileNetV3
further improves efficiency through neural architecture search and lightweight attention
modules [HPA+19]. EfficientNet [TL19, TL21], another widely adopted architecture,
scales models systematically in terms of depth, width, and resolution to achieve an
optimal trade-off between accuracy and efficiency. It also seeks to use hardware-friendly
operation blocks to increase performance.

Other architectures, such as YOLO [RDGF16, RF17, RF18, BWL20] and SqueezeNet [IMA+16],
are tailored for real-time applications. YOLO started to achieve high-speed object detec-
tion by using a single neural network to predict bounding boxes and class probabilities
simultaneously. SqueezeNet, on the other hand, uses a "fire module" structure to minimize
parameters while maintaining similar accuracy to larger models like AlexNet, making

15

2. Background and Preliminaries

it ideal for edge inference. These efficient architectures enable edge devices to perform
complex tasks like image recognition and object detection in real-time with limited
resources.

Model Compression

Model compression techniques improve the feasibility of deploying existing DNN models
on edge devices by reducing their size and computational requirements [CR19, MBCM22].
The three most common techniques are:

• Quantization: Quantization reduces the precision of model parameters and opera-
tions from floating-point (e.g., 32-bit) to lower-precision formats such as 8-bit inte-
gers. This not only reduces memory usage, but also enables faster inference by lever-
aging hardware accelerators optimized for integer arithmetic [JKC+18, HMD16].
Quantization-aware training ensures that the model remains robust despite reduced
precision.

• Pruning: Pruning removes unnecessary weights or connections in a neural network,
effectively reducing its size and computational complexity [HMD16]. Structured
pruning, which removes entire neurons or channels, is particularly effective for
edge devices, as it aligns well with the requirements of hardware implementations.
Pruning can be applied iteratively during training to maintain model accuracy.

• Knowledge Distillation: This technique involves training a smaller “student” model
to mimic the output of a larger, more complex “teacher” model [HVD15]. The stu-
dent model learns to replicate the teacher’s behavior through a softened probability
distribution, capturing the generalization abilities of the larger model. Knowledge
distillation is widely used to create compact models that are well-suited for edge
deployments without compromising significantly on accuracy.

These model compression techniques can be applied individually or in combination to
produce highly efficient models that meet the computational and memory constraints
of edge devices. The resulting models are capable of performing inference with mini-
mal energy consumption, enabling sustainable and effective deployment in real-world
applications [HMD16, JKC+18, HVD15].

2.4.2 Workload Distribution

In addition to optimizing on-device computation, workload distribution leverages col-
laborative capabilities of multiple devices to handle computational demands more ef-
fectively [CR19]. This strategy includes federated learning [MBCM22] and split learn-
ing [CLY+24] during the training phase and split computing [CR19] for inference.

16

2.5. Split Computing

Federated Learning

Federated learning enables edge devices to collaboratively train a global model without
sharing raw data [MMR+17]. Each edge device trains a local model on its private dataset
and sends only the model updates to a central server, where they are aggregated to update
the global model. This decentralized training approach reduces communication overhead
and ensures data privacy, making it particularly suitable for sensitive applications like
healthcare and finance. By keeping data localized, federated learning addresses privacy
concerns while taking advantage of distributed computational resources.

Split Learning

Split learning is a distributed training technique that divides the model into a “head”
executed on the client and a “tail” on the server. During training, the client processes data
through the head, sends intermediate representations to the server for further computation
and backpropagation, and receives gradients to update the local model [CLY+24, SMB22].
This approach reduces communication overhead compared to sending raw data, making it
suitable for privacy-sensitive and resource-constrained environments [LWWW24, CLC22,
MVO+24].

Unlike Federated Learning, where clients train entire models locally and only share
updates with a central server, Split Learning divides the model into two parts. Clients
handle the initial layers and send intermediate activations to a server, which completes
the remaining computation [SMB22, CLC22]. This approach reduces the computational
burden on resource-constrained clients, making it suitable for devices such as IoT systems.
However, unlike parallel training in Federated Learning, Split Learning relies on sequential
communication between clients and the server, which can limit scalability in environments
with many clients.

Split Computing

Split computing, used during inference, allocates AI model execution tasks between edge
devices and also external resources such as cloud servers [MLR23, KHG+17]. There
are various approaches to divide neural networks and place it on different devices.
This is especially useful for large models, optimizing resource use, latency, and energy
consumption, and allowing advanced AI models on edge devices beyond their capacity
limits. The next section explores split computing further, focusing on giving an overview.

2.5 Split Computing
Split computing partitions the execution of DNN models between different devices.
By processing initial layers locally and offloading subsequent layers, split computing
reduces latency, optimizes resource utilization, and enables resource-constrained devices
to run advanced AI models [MLR23]. This approach has been applied to tasks such
as image classification [KHG+17, LOD18, JJLM18], object detection [CB18, CCB20],

17

2. Background and Preliminaries

and sentiment analysis [PCMP21], using models such as VGG16 [LLW+18, INY21],
ResNet50 [EEP19, CCB20], and GoogLeNet [JJLM18, LOD18].

Split computing approaches can be categorized into two types:

• Without Architectural Modifications: These methods exploit natural bottlenecks
within model architectures, which are intermediate layers with an output smaller
than the input, to identify split points. The first paper addressing split comput-
ing [KHG+17] concluded that, for certain models, splitting at the input or output
layers minimized latency and energy consumption. This is equivalent to computing
the whole inference locally or remotely. However, these methods heavily depend
on the model architecture, and some recent models such as ResNet [HZRS16]
lack early bottlenecks, which limits their effectiveness. Some studies have also
used this approach to address privacy concerns by offloading only intermediate
representations [JJLM18]. Others, like JointDNN [EAP21], extend this approach
to include generative models and autoencoders for collaborative computation. In
contrast to Neurosurgeon [KHG+17], they conclude that splitting results in optimal
solutions in terms of latency and energy consumption.

• With Bottleneck Injection: These methods introduce artificial bottlenecks and
modify the architecture to facilitate splitting. For example, encoding and decoding
components can compress intermediate representations to reduce communication
overhead [EEP19, MCB+20]. Approaches such as BottleNet [EEP19] and feature
compression strategies [CB18] incorporate lightweight encoders to ensure efficient
data transmission, even for models without natural bottlenecks. These methods
have the disadvantage that they require some form of additional training after
injection of the bottleneck.

Most studies [LLW+18, EAP21, PCMP21, KHG+17, LAB23, BVP+21, ZCX21, ZLL+20]
evaluate various types of cost (e.g. computational load, energy consumption, commu-
nication cost) to partition models at each of their splitting points, while only a few
choose splitting points based on heuristics [CB18, CCB20]. Some approaches make use of
graph-based optimization, which models the DNN as a computational graph to analyze
trade-offs [EAP21]. Emerging approaches, such as reinforcement learning, dynamically
adjust split points based on system conditions [CLY+24]. These methodologies aim to
balance computational load, communication overhead, and task-specific performance.

Although split computing effectively reduces latency and data transfer, many studies
prioritize these metrics over energy consumption, which remains underexplored as a
critical optimization target.

2.5.1 Motivational Scenario for Split Computing

Knowing the background and approaches in split computing, we can now consider a
practical scenario that highlights the relevance of this technique. Figure 2.3 illustrates a

18

2.5. Split Computing

system in which users employ an edge device application to perform image classification
tasks. This application uses a neural network (NN) and opportunistically engages cloud
resources to perform inference operations.

During execution, the application decides whether to:

• perform inference entirely on the edge node (edge-only),

• fully delegate inference to a cloud node (cloud-only), or

• adopt a hybrid approach by splitting the NN into a head model processed on the
edge and a tail model executed in the cloud.

This hybrid approach leverages the strengths of both edge and cloud computing. Edge-
only inference minimizes latency by avoiding network overhead, but is constrained by the
limited computational capacity of edge devices. Cloud-only inference, on the other hand,
provides access to high computational resources but incurs additional latency due to
data transfer. Split computing strikes a balance by processing some layers of the model
locally and offloading the rest to the cloud, optimizing latency and resource utilization.

Figure 2.3: Motivational scenario for split computing: inference tasks can be executed on
the edge, in the cloud, or through a hybrid approach that splits the computation between
both [MTIB24].

This scenario demonstrates how split computing enables edge devices to perform complex
tasks that would otherwise be infeasible, improving overall system performance. By
balancing computation between edge and cloud, split computing supports the deployment
of advanced AI models in real-world applications while addressing challenges related to
latency, scalability, and resource constraints.

The next chapter reviews existing work on split computing and related approaches,
exploring their methodologies and contributions to this field.

19

CHAPTER 3
Related Work

This chapter provides an overview of related work in energy-aware split computing,
focusing on approaches without architectural modifications that align with our goals of
easy deployment. First, we briefly discuss studies employing architectural modifications,
emphasizing their strengths and limitations. Then, we analyze in detail energy-aware split
computing works without architectural changes, highlighting similarities and differences
with our approach. Finally, we summarize the current state of research and position our
contributions.

3.1 Split Computing with Bottleneck Injection

Split computing approaches that introduce architectural modifications often aim to
compress intermediate representations, improve communication efficiency, or tailor models
for deployment in resource-constrained environments. While effective, these methods
require significant retraining of neural networks, which limits their applicability for
pre-trained models in real-world deployment. In the following, we summarize key studies
in this category that are also energy-aware.

The SPINN framework [LVA+20] incorporates progressive inference by adding early exits
to CNNs such as ResNet50 and MobileNetV2, allowing dynamic adjustments to accuracy,
latency and energy based on input complexity. A multiobjective scheduler optimizes split
points and early exit policies in real time. However, the need for extensive retraining to
integrate early exits and optimize a specialized cost function reduces its practicality for
deployment.

DeepCOD [YLL+20] leverages encoder-decoder structures for compressive offloading,
targeting models such as ResNet50 and DeepSpeech. By integrating compressive sensing
and knowledge distillation, it achieves high compression ratios (up to 1000x) with minimal

21

3. Related Work

accuracy loss. However, this approach requires retraining the encoder-decoder pipeline,
making it less suitable for deployment with pre-trained models.

BottleFit [MCS+22] replaces intermediate DNN layers with encoder-decoder bottlenecks
to compress data for transmission. This method achieves up to 77.1% compression with
a loss of accuracy of less than 0.6%. However, it requires multistage retraining, including
pre-training and fine-tuning of the compressed layers, to maintain accuracy under strong
compression.

SpikeBottleNet [HD24] applies spiking neural networks (SNNs) to split computing by
introducing bottlenecks that transform intermediate representations into sparse spike
events. This results in high compression ratios and significant energy savings, but requires
retraining SNNs and compression modules, making it less applicable for pre-trained
models.

These approaches demonstrate substantial energy improvements but depend on archi-
tectural modifications that require retraining. In contrast, our work focuses on split
computing for pre-trained neural networks, avoiding the need for retraining. The next
section examines studies that share this focus.

3.2 Split Computing without Architectural Modifications
This section reviews energy-aware split computing studies that operate on pre-trained
models without requiring architectural changes. These approaches align closely with
our focus on inference-only deployment scenarios. Table 3.1 summarizes key dimensions
of these studies, including their tasks, datasets, neural network models, and perfor-
mance metrics. We analyze the studies listed in detail, highlighting their methodologies,
contributions, and limitations.

The foundational work of Neurosurgeon [KHG+17] introduced a system that dynamically
partitions DNN computation between mobile devices and the cloud to optimize latency
and energy consumption. It profiles each DNN layer to predict latency and energy under
runtime conditions, such as network bandwidth and server load, and selects split points
accordingly. Neurosurgeon’s key strength lies in its lightweight runtime system, which
minimizes computational overhead. However, its reliance on layer-specific regression
models for performance prediction introduces inaccuracies, as the execution of consecutive
layers does not always follow a linear trend. In contrast, DynaSplit uses application-
specific profiling for greater precision, capturing the actual performance of split points
under the given application configuration. Neurosurgeon also focuses solely on layer
partitioning and does not address hardware-level optimizations, such as tuning CPU or
TPU frequencies, which DynaSplit incorporates to further improve energy and latency
trade-offs.

JointDNN [EAP21] models split computing as a shortest-path optimization problem
in a directed acyclic graph (DAG). The nodes represent DNN layers, and the edges
encode computation and communication costs. Using integer linear programming (ILP),

22

3.2. Split Computing without Architectural Modifications

JointDNN dynamically determines optimal split points to minimize latency or energy
consumption while adhering to specific constraints, such as battery life or QoS. Unlike
Neurosurgeon, JointDNN extends its applicability to generative models and autoencoders.
However, JointDNN does not include hardware tuning as part of its optimization strategy,
which limits its ability to further enhance efficiency, which contrasts with our work
DynaSplit.

CRIME [PCMP21] focuses on optimizing RNN inference across a collaborative network
of devices. Rather than splitting computations across multiple devices, CRIME assigns
entire inference tasks to a single device, dynamically selecting the optimal device based on
local estimations of execution and transmission times. This decentralized decision-making
allows CRIME to adapt effectively to changing network conditions, workloads, and input
sizes without requiring global coordination. However, CRIME is specialized for RNNs
and does not generalize well to other DNN architectures. In contrast, DynaSplit ’s
profiling and optimization framework supports a wide range of architectures, including
transformers. Furthermore, DynaSplit operates in a fixed edge-cloud setup, whereas
CRIME focuses on distributed device networks, making it less applicable to scenarios
requiring centralized coordination.

Labriji et al. [LMAS23] propose a dynamic resource allocation algorithm for energy-
efficient cooperative inference. This method uses Lyapunov stochastic optimization to
select split points and communication resources based on real-time observations of system
parameters, such as wireless channel conditions and edge server CPU availability. Unlike
DynaSplit, which assumes a fixed edge-cloud pair, Labriji et al. include the selection
of the offloading device as part of their optimization. This broader scope allows them
to address scenarios with multiple offload options, although it makes their approach
less applicable to fixed deployment setups such as DynaSplit ’s. Additionally, their
algorithm does not consider hardware parameter tuning, which limits its ability to explore
energy-latency trade-offs at a finer granularity.

Xiao et al. [XXW+23] employ a reinforcement learning framework to optimize split points
and edge server selection for collaborative inference. Their approach dynamically adjusts
the partitioning of DNNs while simultaneously choosing the most suitable edge server to
balance latency and energy consumption. This dual optimization scope distinguishes Xiao
et al. from DynaSplit, which operates in a fixed edge-cloud setup. Although effective,
the focus on device-level energy consumption excludes cloud energy considerations, which
DynaSplit incorporates for a more holistic optimization. Both studies have in common
that they consider the energy of all devices involved in the split computation.

Yang et al. [YW23] adopt a coalition formation game to optimize user associations and
resource allocation in privacy-sensitive split inference for edge camera networks. Their
framework integrates privacy, energy efficiency, and detection accuracy into a unified
utility function, encouraging overlapping-view cameras to offload tasks to the same
counterpart for enhanced accuracy. Unlike DynaSplit, which focuses on energy and
latency trade-offs, Yang et al. explicitly optimize for privacy and detection accuracy,
making their approach well suited for specialized applications in edge camera networks.

23

3. Related Work

However, their focus on privacy and overlapping camera views makes their method less
applicable to more general-purpose edge-cloud setups.

Liu et al. [LFEF24] introduce a two-split DNN inference strategy in a three-tier architec-
ture consisting of an edge device, a near-edge accelerator, and the cloud. Their approach
uses Pareto front optimization to balance latency and energy, introducing autoencoders
to compress intermediate feature maps and reduce communication overhead. Although
this method achieves fine-grained trade-offs, the reliance on autoencoder training intro-
duces more overhead during deployment. DynaSplit avoids any training entirely and
focuses on single-split configurations, making it more practical for deployment in simpler
edge-cloud setups.

Zhao et al. [ZSL+24] present a two-timescale optimization framework for UAV-based split
inference. Their approach integrates Tiny Reinforcement Learning for split point selection
and Optimization Programming for resource allocation, targeting energy efficiency and
delay constraints for sequential tasks. Although effective for UAV navigation, the method
of Zhao et al. is highly specialized and lacks generalizability to various edge-cloud setups.
In contrast, DynaSplit provides a more general framework suitable for a wide range of
edge-cloud applications.

Li et al. [LB24] focus on energy-efficient split inference in wireless sensing systems with
multiple users. Their framework integrates deep-reinforcement learning to determine
optimal split points and convex optimization for resource allocation, addressing the unique
challenges of multiuser setups such as indoor crowd counting and action recognition.
Although their approach is effective for this specialized use case, it does not generalize
to broader edge-cloud deployments. DynaSplit, on the other hand, targets a fixed
edge-cloud pair, allowing a wider applicability to generic inference scenarios.

Zhang et al. [ZZL+24] propose DVFO, which integrates dynamic voltage and frequency
scaling (DVFS) with reinforcement learning to optimize energy and latency for edge
devices. Although DynaSplit shares the concept of hardware tuning, DynaSplit
extends this to include also the hardware parameter of cloud devices and additionally
considers cloud energy in optimization, providing a more comprehensive view of energy
consumption.

3.3 Summary

The reviewed studies highlight diverse approaches to energy-aware split computing,
focusing on dynamic partitioning, collaborative resource management, and domain-
specific optimizations. Although these methods effectively address latency, energy,
and accuracy trade-offs, they often lack considerations such as total system energy,
comprehensive hardware tuning, or support for transformer architectures. In addition,
many approaches are tailored to specific applications, limiting their generalizability to
broader edge-cloud setups.

24

3.3. Summary

This work introduces DynaSplit, a framework that addresses these gaps through the
following contributions:

• DynaSplit employs application-specific profiling for accurate performance mea-
surements, overcoming the limitations of prediction-based approaches such as
Neurosurgeon.

• It incorporates hardware parameter tuning for both edge and cloud devices, enabling
finer control over energy-latency trade-offs.

• By assuming a fixed edge-cloud pair, DynaSplit simplifies deployment compared
to methods like Labriji et al. and Xiao et al., which include offloading device
selection as part of the optimization.

• DynaSplit explicitly supports transformer architectures, which addresses a gap
in existing energy-aware split computing studies.

• Unlike most previous work, DynaSplit considers the total energy consumption of
all devices involved in the inference process, extending the scope of optimization
beyond edge-only setups.

By integrating these features into a unified hardware-software co-design framework,
DynaSplit provides a scalable and efficient solution for energy-aware, latency-sensitive
inference across diverse edge-cloud deployments, advancing the state of the art in split
computing.

25

3. Related Work

Work Task Dataset Models Metrics

Kang et al.
[KHG+17]

Image classification
Speech recognition

NLP
N/A

AlexNet
VGG19

DeepFace
LeNet-5
Kaldi

SENNA

D, E, L

Eshratifar et al.
[EAP21]

Image classification
Speech recognition

N/A

AlexNet
OverFeat

NiN
VGG16

ResNet50

D, E, L

Pagliari et al.
[PCMP21]

Time-series analysis
NLP

SNLI
SQuAD
IMDB

RNNs E, L

Labriji et al.
[LMAS23]

Image classification ImageNet MobileNetV2 E, L

Xiao et al.
[XXW+23]

Object detection ImageNet
AlexNet
VGG19

E*, L

Yang et al.
[YW23]

Object detection Caltech101 VGG19 A, E, P

Liu et al.
[LFEF24]

Image classification
CIFAR-100
ImageNet

VGG16
ResNet50

A, E, L

Zhao et al.
[ZSL+24]

Image classification N/A Custom CNN E, L

Li et al.
[LB24]

Wireless sensing N/A Custom CNN E, L

Zhang et al.
[ZZL+24]

Image classification
Speech recognition

CIFAR-100
ImageNet

EfficientNet-B0
ViT-B16

A, E, L

This work Image classification ImageNet

VGG16
ResNet50

MobileNetV2
ViT-B16

A, E*, L

Table 3.1: Overview of prior work and comparison to this study analogously to [MLR23].
Metrics: A: Model accuracy, D: Transferred data size, E(*): Energy consumption (of all
devices), L: Latency, P: Privacy.

26

CHAPTER 4
Definitions and Problem

Formulation

In this chapter, we provide detailed definitions that are essential for the reader’s compre-
hension and proceed to define and elaborate on the associated optimization problem.

4.1 Notation

We utilize the following notation to differentiate between specific moments and durations:

• Points in time are indicated by lowercase letters like t0, tnet1, and tnet2, each
specifying a distinct point during the inference phase.

• Time spans (durations or intervals) use uppercase letters such as Tedge, Tnet, and
Tcloud, representing the length of time allocated for particular tasks.

4.2 Model Partitioning

Consider a neural network (NN) model M , consisting of L layers, which is divided into
two segments: a head segment indicated by Mh, containing the first k layers, and a
tail segment denoted by Mt, consisting of subsequent L− k layers. The segment Mh is
executed on the edge device, while the segment Mt is handled by the cloud server. After
processing the head segment Mh, the edge device transmits the intermediate results to
the cloud server, allowing further processing by the tail segment Mt. The selection of the
split layer k can be adjusted within a range of 0 to L, thus covering a variety of specific
configurations:

27

4. Definitions and Problem Formulation

• k = 0: Here, the model is run entirely in the cloud, with the edge device simply
transmitting input data.

• k = L: In this case, the model runs entirely on the edge device, eliminating the
need for data transfer to the cloud.

Changing k, it is possible to dynamically distribute the neural network inference task
between the edge and the cloud. This approach provides crucial adaptability to bal-
ance objectives such as latency, energy consumption, and accuracy, while respecting
model limitations and application QoS requirements. Edge devices typically have lim-
ited computational capacity relative to cloud servers, affecting their ability to handle
many latency-sensitive requests. In contrast, cloud systems offer scalable resources and
predominantly consume energy during active processing, as opposed to data transfer
or idle times. Modern cloud models, particularly serverless computing, facilitate these
on-demand computing services [LZY+22].

4.3 Configuration Space
The latency and energy consumption during inference are significantly impacted by the
choice of split layer and various hardware configurations. Modifying computing unit
frequencies and leveraging accelerators can greatly affect this process. These elements
are all components of a system configuration. Our objective is to identify the optimal
configuration settings for a specified inference task. The configuration space X includes
suitable hardware and software parameters, including the split layer, CPU frequency
adjustments at the edge, the use of edge hardware accelerators, and the deployment of
cloud GPU resources.

4.4 Latency Model
The cumulative inference duration Tinf(x) for a given setup x ∈ X consists of these
separate times:

• Edge Inference Time Tedge(x): Time consumed by executing the initial part
Mh on an edge device.

• Network Transfer Time Tnet(x): Duration required for data transmission
between the edge and the cloud, covering both the delivery of intermediate results
and the reception of final output.

• Cloud Inference Time Tcloud(x): Time spent processing the latter segment Mt

on a cloud platform.

Thus, the total inference duration is expressed as:

Tinf(x) = Tedge(x) + Tnet(x) + Tcloud(x)

28

4.5. Energy Model

considering these distinct cases:

• For k = 0 (Cloud-Only Inference): Tedge(x) is negligible since the full computation
is managed by the cloud, yet minimal tasks such as data preparation occur on the
edge device.

• For k = L (Edge-Only Inference): Both Tcloud(x) = 0 and Tnet(x) = 0, as every
calculation is completed locally on the edge device, eliminating the need for cloud
data transfer.

The network transfer time Tnet(x) becomes significant only when k < L, indicating the
inference is shared between the edge and the cloud.

4.5 Energy Model
The total energy consumption, denoted as Einf(x), comprises the energy consumed by
both edge and cloud devices. The energy is determined by integrating the power over
specific time intervals. For the edge device, this involves calculating the energy throughout
the inference time frame, starting at t0 and ending at tinf, which is equivalent to the
complete inference period Tinf. In contrast, for the cloud device, the energy is calculated
only during its active processing period, beginning at tnet1 and ending at tnet2, indicating
the initiation and termination of the cloud computation phase. Although we consider
the energy utilization by both edge and cloud devices during their computation periods,
we do not include the energy used by network infrastructure components, such as routers
or switches, during data transmission. This omission is due to the practical challenges of
measuring network energy consumption [SGSB+15] and its relatively insignificant effect.

As a result, the overall energy consumption is represented by:

Einf(x) =
{︄∫︁ tinf

t0
Pedge(t, x) dt if edge-only computation,∫︁ tinf

t0
Pedge(t, x) dt +

∫︁ tnet2
tnet1

Pcloud(t, x) dt otherwise.

where:

• t0 denotes the start of the entire inference procedure, which can involve beginning
the edge inference or organizing data for transfer to the cloud.

• tnet1 represents the moment when the transfer of data from the edge to the cloud ends
and the cloud is set to start processing. This stage is relevant only if computation
is involved in the cloud (that is, k < L).

• tnet2 is the point at which the cloud completes the processing and returns the results
to the edge. Similarly to tnet1, this stage applies only if the cloud computation
occurs (k < L).

29

4. Definitions and Problem Formulation

• tinf marks the conclusion of the inference procedure, either when the edge computa-
tion is complete (for edge-only scenarios) or when the edge obtains the results from
the cloud.

Figure 4.1 shows an example of how total energy is computed over time using the notation
introduced above.

Time
t0 tedge-end tnet1 tnet2 tinf

Tedge T 1
net Tcloud T 2

net

∫︁ tinf
t0

Pedge(t, x) dt

∫︁ tnet2
tnet1

Pcloud(t, x) dt

Tinf

Figure 4.1: Energy consumption and time intervals throughout the inference process.
The timeline illustrates edge computation (Tedge), data transfer to the cloud (T 1

net), cloud
computation (Tcloud), and the return transfer to the edge (T 2

net). Edge energy is measured
across the entire duration of inference, whereas cloud energy is only accounted for during
the cloud computation phase.

4.6 Optimization Problem

DynaSplit primarily seeks to minimize latency and energy consumption while simul-
taneously increasing the accuracy of inference through a hardware-software co-design
framework.

This is organized in the form of a multi-objective optimization problem (MOOP) and
can be depicted as follows:

minimizex∈X (Tinf(x), Einf(x),−A(x)) (4.1)

where A(x) denotes the accuracy of inference for a particular configuration x, serving
as a function that maps from the configuration space X to the corresponding accuracy
value.

Finding solutions to the MOOP generates a set called Pareto front. This set comprises
non-dominated configurations, which means that no alternative configuration in the search
space can improve one objective without compromising at least one other [NZES05].
Essentially, the Pareto front highlights the best trade-offs among objectives by offering a
spectrum of configurations that balance these competing criteria. For example, obtaining
lower latency might lead to higher energy consumption, but still deliver superior accuracy.

30

4.6. Optimization Problem

A configuration x∗ ∈ X is considered non-dominated if there is no configuration x ∈ X
such that:

fi(x) ≤ fi(x∗) for every i = 1, 2, . . . , m

and
fj(x) < fj(x∗) for at least one j.

Here, fi(x) represents the i-th objective, with m being the total number of objectives.
The set of all these non-dominated configurations constitutes the Pareto front P:

P = {x∗ ∈ X | there is no x ∈ X that dominates x∗}.

In our scenario, the goals are to minimize the total inference latency Tinf(x), minimize
the total energy consumption Einf(x), and maximize the accuracy A(x).

31

CHAPTER 5
DynaSplit: Methodology and

Solution Approach

This chapter outlines DynaSplit’s methodology and solution strategy. It starts with
highlighting crucial observations on how hardware and software setups affect system
performance and define the search space for exploration. The parts of the core system
are described, followed by details of DynaSplit’s Offline Phase and Online Phase.

5.1 Preliminary Observations

We analyzed a variety of neural networks in split computing settings by adjusting
various hardware and software configurations to gain deeper insights into the previously
mentioned scenario through empirical data. To facilitate this, we established an edge-
cloud testing environment that included a Raspberry Pi 4B (featuring a quad-core ARMv8
processor and 8 GiB of RAM), supported by a Google Coral TPU serving as an edge
accelerator, alongside a cloud node (featuring dual Intel Xeon E5-2698 v4 CPUs and
512 GiB of RAM) equipped with 8 NVIDIA Tesla V100 GPUs (although only a single
GPU was used for the tests). Using the ImageNet dataset [RDS+15], we evaluated four
pre-trained neural networks. which consisted of ResNet50 [HZRS16] containing 0.85
million parameters, MobileNetV2 [SHZ+18], VGG16 [SZ15] with 138 million parameters
and Vision Transformer (ViT) [DBK+21] housing 86 million parameters. Collectively,
we generated 1,000 inference requests by randomly choosing images from the ImageNet
validation dataset, simulating a user workload. In addition, we collected data on latency,
energy expenditure, and accuracy to enhance our analysis.

Throughout our preliminary experiments, it became evident that split computing is
remarkably advantageous for neural networks possessing a vast number of parameters,
such as VGG16 and Vision Transformer. In contrast, smaller models such as ResNet50

33

5. DYNASPLIT: Methodology and Solution Approach

and MobileNetV2 did not gain any advantage from split computing. These smaller models
perform with greater speed and lower energy usage when using edge-based deployments
only. On the other hand, VGG16 and ViT exhibited significant latency improvements by
using both edge and cloud resources. This outcome underscores the potential of split
computing for larger networks. Our motivation is driven by the intention to examine
runtime configurations that effectively employ the capabilities of both edge and cloud
systems. This approach aims to improve the performance of computation-heavy models
while decreasing the total energy consumption. Given these insights, VGG16 and ViT
have been selected as the networks of interest for our investigation.

In addition, we employ the VGG16 model to thoroughly investigate how different param-
eters influence inference tasks. VGG16 represents a convolutional neural network (CNN)
with up to 22 layers, as detailed in its open-source Keras implementation. We identify
the following possible runtime configurations:

1. Modifying the CPU frequency on the edge node.

2. Choosing the use of a hardware accelerator, such as a TPU, on the edge node or a
GPU on the cloud node.

3. Segmenting the CNN architecture into a dynamic head model and tail model,
enabling the execution of specific layers on the edge node while the remaining layers
run on a cloud node.

In Figure 5.1, Figure 5.2, and Figure 5.3 the influence of particular configuration settings
is illustrated on three different metrics: the mean latency measured in milliseconds, the
mean energy usage quantified in Joules, and the mean accuracy of inference queries.

In Figure 5.1a, we present the results of running exclusively on the edge by adjusting the
CPU frequency of the Raspberry Pi 4B, intentionally excluding the TPU edge accelerator.
Thus, we can investigate the effect of CPU frequency on the inference process. The
data indicates that elevating the CPU frequency results in reduced latency and energy
consumption. Initially, both metrics drop notably, although the rate of decrease slows as
the frequency is further increased. Remarkably, we detected anomalies at the 800 MHz
setting across repeated trials, which deviate from the general pattern.

Figure 5.1b illustrates the impact of the model split layer on both latency and energy
usage. To illustrate, when division occurs at layer 5, the initial five layers are processed
on the edge node, while the subsequent layers are executed on the cloud node. In this
case, the TPU is employed as the edge accelerator, operating at its maximum frequency
of 500 MHz, and the CPU runs at 1,800 MHz. Furthermore, the cloud node uses a
GPU for acceleration. The data show that inference is the fastest when done solely on
the cloud device. Also, we can see that edge computation takes a significantly longer
duration. The split solutions between show non-linear behavior. The energy consumption
follows a pattern similar to the latency. However, finding an optimal split point proves

34

5.1. Preliminary Observations

to be complex as the relationship between the split point and both latency and energy
consumption is intricate.

600 800
1000

1200
1400

1600
1800

CPU Frequency (MHz)

2000

3000

4000

5000

La
te

nc
y

(m
s)

8

10

12

14

En
er

gy
 (J

)

Latency
Energy

(a)

300

400

500

0 5 10 15 20
Split Layer

0

100

200

40

60

80

0

1

2La
te

nc
y

(m
s)

En
er

gy
 (J

)

Latency
Cloud Energy
Edge Energy

(b)

Figure 5.1: This figure illustrates the effects of adjusting CPU frequency and modifying
the split layer on the latency experienced and energy consumed during inference tasks
when utilizing the VGG16 network. Results are derived from averaging data collected
over 1,000 inference operations [MTIB24].

In our analysis of edge acceleration within edge-only configurations, the TPU was either
inactive, running at its standard 250 MHz frequency, or at its maximum 500 MHz
frequency. Figure 5.2a illustrates how these settings affect energy consumption and
latency. While the TPU consumes additional power, it delivers ∼ 3× lower average
energy usage than CPU-based computation, due to accelerated processing and shorter
inference times. Interestingly, there is no substantial discrepancy in performance between
the 250 MHz (std) and 500 MHz (max) TPU settings for this network.

Furthermore, we explored the impact of cloud acceleration with and without GPU in
cloud-only scenarios, as depicted in Figure 5.2b. The results reveal that GPU acceleration
decreases both latency and energy usage in the cloud environment by about a third.

In our last preliminary analysis, we assess how the use of edge acceleration and splitting
layers influences the accuracy of the inference. The accuracy is expected to generally
decline as more model layers are processed on an edge node, due to the necessary
quantization of the model into 8-bit integers to enable operation on edge devices with
limited resources [DLH+20, CMGS20]. Surprisingly, our findings indicate that any
changes in accuracy remain minimal, consistently falling within a sub-percent margin, as
illustrated in Figure 5.3. Although there is a slight reduction in accuracy when the final
layers are executed on the edge, this effect does not distinctly favor either the TPU or
CPU, with the minor discrepancies likely attributed to numerical variations.

We have found that latency and energy consumption during inference tasks are significantly
impacted by a mix of hardware-software parameters, with minimal effect on accuracy,

35

5. DYNASPLIT: Methodology and Solution Approach

off std max
TPU Settings

0

500

1000

1500
La

te
nc

y
(m

s)
Latency
Energy

0

2

4

6

8

En
er

gy
 (J

)

(a)

on off
GPU Settings

0

50

100

150

La
te

nc
y

(m
s)

Latency
Energy

0

25

50

75

100

125

150

En
er

gy
 (J

)

(b)

Figure 5.2: Influence of utilizing TPU settings, including adjustment of frequency,
alongside GPU settings on both the inference duration and energy consumption for the
VGG16 architecture [MTIB24].

0 5 10 15 20
Split Layer

0.604

0.606

0.608

0.610

Ac
cu

ra
cy

TPU On
TPU Off

Figure 5.3: This visualization illustrates how adjusting the split layer and using TPU
resources can influence the accuracy outcomes for the VGG16 architecture [MTIB24].

which leads us to the configuration space depicted in Table 5.1. This underscores the
importance of developing sophisticated runtime configuration and scheduling methods
for neural network-based inference in edge-cloud frameworks. These systems must adhere
to quality of service standards while striving for energy efficiency.

5.2 System Overview

We present DynaSplit, a framework that prioritizes energy efficiency by combining
software parameters (e.g., the neural network split layer) with hardware parameters (such

36

5.2. System Overview

Table 5.1: Classification and extent of various hardware and software parame-
ters [MTIB24].

Parameter Parameter Type Domain

CPU Frequency (CPUf) Numerical
(low: 0.6, high: 1.8, step: 0.2) {0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8}

Edge TPU Frequency (TPUf) Categorical {off, std, max}

Use Cloud GPU (GPU) Categorical {Yes, No}

VGG16 [SZ15] Split Layer (LV GG) Numerical
(low: 0, high: 22, step: 1) {0, 1, 2, . . . , 22}

Vision Transformer [DBK+21] Split Layer (LV iT) Numerical
(low: 0, high: 19, step: 1) {0, 1, 2, . . . , 19}

as accelerator use and CPU frequency) in a co-design optimization framework. This
framework aims to efficiently handle and respond to inference requests at the edge nodes.

Using DynaSplit, an in-depth investigation of extensive parameter search spaces is
performed to uncover the optimal execution settings. This facilitates dynamic tuning
of both edge and cloud computing nodes and supports strategic scheduling of inference
tasks.

[Offline Phase]

[Online Phase]

Pre-trained
Neural Networks

Evaluation
Dataset

Configuration
(HW/SW params)

Inference Result

Exploration Budget
(Number of Trials)

Edge &
Cloud

Testbed

Engineer

Non-dominated
Configurations

Objectives
(Latency, Energy, Accuracy)

Search Space
(Configurable HW/SW params)

2. Prepare Networks

3. Run Solver

1. Define MOOP
a. Get Trial

d. Compute
Objectives

c. Execute
Experiment

b. Configure
HW/SW
Params

User QoS Level

Inference Task

a. Select
Configuration

(b) Apply
Configuration

1. Send Inference Request

(c) Schedule
Inference Task

Edge Node

Cloud Node

TPU

TPU

This image has been designed using resources from Flaticon.com

DynaSplit Solver

DynaSplit Controller

Figure 5.4: This diagram offers an extensive illustration of the DynaSplit framework,
detailing its structure and components [MTIB24].

In Figure 5.4, a comprehensive outline of the DynaSplit framework is depicted, high-
lighting its two essential components: DynaSplit Solver and DynaSplit Controller .
These integral parts coordinate the separate phases of the framework’s process, identified
as Offline Phase and Online Phase.

37

5. DYNASPLIT: Methodology and Solution Approach

The DynaSplit Solver tackles the multi-objective optimization problem by thoroughly
investigating the hardware-software search domain. Using a metaheuristic approach,
it identifies configurations that are near optimal, which are subsequently used during
execution to determine model partitioning points and allocate tasks to edge and cloud
nodes. This methodology proves beneficial in the navigation of an expansive search
domain, especially when the computational expense of assessing optimization goals is
extremely high [TMI+23].

The DynaSplit Controller is responsible for organizing the schedule of incoming infer-
ence requests, focusing mainly on choosing the most energy-efficient setup identified by
the DynaSplit Solver during the Offline Phase. This setup must meet the required
quality of service requirements. The method for selecting the configuration guarantees
that the specified inference latency limit is adhered to, consuming minimal energy and
maintaining the inference task’s precision.

5.3 Offline Phase

Within the Offline Phase, there are three main activities. Initially, the multi-objective
optimization problem needs to be established by specifying the optimization goals and
identifying the relevant hardware and software characteristics that form the search space.
Subsequently, it is crucial to have pre-trained neural networks ready to handle any possible
combinations of head and tail models. Lastly, the engineer can execute the DynaSplit
Solver , enabling exploration of the search space to uncover the configurations that are
not dominated.

5.3.1 Defining the MOOP

In accordance with section 4.6, DynaSplit aims to optimize three main goals: reducing
energy consumption, decreasing inference latency, and improving inference accuracy.
However, DynaSplit’s scope is not limited to these objectives. The search space X,
made up of both hardware and software parameters, is structured as a collection of
configuration tuples. Specifically, X encompasses four distinct parameters: the CPU
frequency at the edge node (CPUf), the frequency of the edge hardware accelerator
(TPUf), the use of a cloud-based GPU, and the neural network split layer (L{network}).
Each parameter domain varies in cardinality, as detailed in Table 5.1. Consequently, the
size of X is calculated as |X| = |CPUf | × |TPUf | × |GPU | × |L{network}| configuration
tuples. For example, for the VGG16 network, the equation yields |X| = 7×3×2×23 = 966.

Initially, the search space X includes every possible combination of parameters. However,
certain parameter configurations are not feasible due to the conditional structure of our
search domain. Specifically, the assignment of a particular value v to the parameter p1
depends on the value w that is assigned to the parameter p2. In detail,

• TPU utilization in exclusively cloud-based inference (k = 0): When computations

38

5.3. Offline Phase

are entirely executed on the cloud node and bypass edge inference, the TPU remains
unused.

• GPU utilization in exclusive edge-based inference (k = L): When computations
occur entirely at the edge node, avoiding cloud processing, GPU is not utilized.

Moreover, every neural network might impose additional restrictions arising from its
architectural and hardware restrictions, prompting the need to specify a search space
for each network individually. Two pre-trained NNs were evaluated in our study, specif-
ically VGG16 [SZ15] and Vision Transformer (ViT) [DBK+21]. The VGG16 model, a
convolutional neural network (CNN), has been extensively applied in the field of image
recognition in the last ten years [ARAD21, KG19, CZ20]. In contrast, ViT represents a
transformer-based neural network, which is rapidly gaining popularity within the research
sector due to its exceptional performance in vision-centric tasks [KNH+22]. With specific
regard to ViT, implementation using edge TPU is omitted in all configurations due to
specific memory restrictions [WZWY22], rendering scenarios with the TPUf parameter
set at 250 or 500 infeasible.

By eliminating VGG16 configurations that are not feasible, we narrow the search space to
a total of 917 viable configurations, effectively omitting 5.07% of the initial search space.
Likewise, for ViT, the number of feasible configurations is refined to 273, thus excluding
2.50%. This strategic reduction in the search space not only significantly reduces the
computational workload required but also maintains the integrity of the solution quality,
thus enabling us to concentrate on the most promising configurations available.

5.3.2 Preparing the Networks

The model partitioning is tailored to suit the unique architecture of each neural network,
ensuring segmentation only occurs where information can flow continuously [MLR23].
As a result, the number of layers available for division varies between networks. For
example, within the VGG16 network, segmentation is feasible after each separate layer,
totaling 22 opportunities for partitioning. In contrast, the ViT network can be divided
at the level of its complete transformer encoder blocks, totaling 19, due to its inherent
structural dependence.

Moreover, it is essential for the network layers to be prepared for deployment on spe-
cialized hardware, such as an edge TPU. Specifically, the head sections of the network
must undergo quantization into 8-bit integers and be compiled exclusively for TPU de-
ployment. This method, termed post-training quantization, can result in minor changes
in accuracy [CMGS20, DLH+20]. We address these potential accuracy fluctuations by
incorporating accuracy as one of the key optimization criteria in our optimization strategy.

For certain networks, size constraints can hinder the ability to perform quantization and
execute them on an edge hardware accelerator, as for ViT [WZWY22]. Therefore, in
such scenarios, the initial segments can be processed using conventional 32-bit floating
point operations on the edge node, relying on computations handled by the CPU.

39

5. DYNASPLIT: Methodology and Solution Approach

5.3.3 Running the DynaSplit Solver

To discover the Pareto front solutions, also known as non-dominated configurations (these
are the configurations that meet the optimization goals to diverse but notable extents),
it is essential to compute the multi-objective function specified in Equation 4.1.

To address the MOOP, DynaSplit utilizes NSGA-III [DJ14, JD14], an efficient and
effective multi-objective optimization algorithm recognized for its effectiveness in a variety
of fields [Fie17, MPCD19, FDHM22]. Specifically tailored for scenarios with multiple
objectives, such as minimizing latency and energy use while maximizing accuracy, non-
dominated Sorting Genetic Algorithm (NSGA)-III enhances its predecessor, NSGA-II,
by incorporating a reference point-based methodology. This advancement ensures a
well-distributed array of solutions throughout the objective space.

The fundamental process of NSGA-III consists of forming a set of candidate solutions
and systematically improving these solutions through iterative evaluations for a variety
of objectives. Unlike algorithms that focus on a single objective, NSGA-III categorizes
solutions into various nondomination levels, where each rank includes solutions that
are not outperformed by any other solution. This method enables the algorithm to
concentrate on preserving the variation within the Pareto-optimal solutions.

The NSGA-III algorithm utilizes a set of predetermined reference points to direct its
search operations, which guarantees a uniform distribution of solutions along the Pareto
front. This characteristic is especially critical in scenarios involving the optimization
of more than two objectives, as it deters the algorithm from concentrating solutions in
limited sections of the objective space. This methodology enables NSGA-III to effectively
manage and balance the compromises between various factors such as energy efficiency,
latency, and accuracy.

To minimize computational demands, we deploy NSGA-III on only 20% of the available
search space, allowing it to still effectively approximate the Pareto front. Concentrating
on this fraction of the search space reduces computational requirements, yet still extracts
a meaningful collection of superior solutions for use during Online Phase. This selective
approach, when combined with the reference point scheme, empowers NSGA-III to
explore an array of diverse, optimal settings that harmonize energy consumption, latency,
and accuracy.

The strength of NSGA-III in comparison to NSGA-II is its capacity to manage problems
involving three or more objectives while maintaining the diversity of the solution space.
This capability is especially important for DynaSplit, which demands simultaneous
optimization of energy, latency, and accuracy across multiple edge-cloud configurations.
The method generates a Pareto front approximation that promotes solution diversity
and provides numerous high-quality trade-offs. Consequently, DynaSplit becomes both
scalable and adaptable to varying workloads and hardware environments.

For every proposed configuration under examination, called a trial, the DynaSplit
Solver adapts the edge-cloud testbed to align with this configuration. This adjustment

40

5.4. Online Phase

involves loading the head and tail networks and configuring all hardware settings listed
in the search space to match the distinct values of the configuration. Subsequently,
the inference task is performed utilizing samples drawn from the evaluation data set.
Throughout the experiment’s execution, data concerning the objective values, such as
inference latency, energy consumption during inference, and accuracy, are gathered and
archived. Subsequently, these objective values are analyzed by the optimization algorithm
to assess the effectiveness of the solution.

Throughout its process, the DynaSplit Solver archives every objective value that it
assesses. Once the operation concludes, it retrieves the subset of configurations that
are non-dominated from the entire result dataset. According to our empirical study,
investigating only 20% of the search space is adequate to pinpoint effective configurations,
compared to a broader search of approximately 80%. This finding is crucial because
determining how each individual configuration meets the objectives requires collecting a
multitude of empirical data points.

To ensure reliable performance metrics, DynaSplit conducts an average of 1,000 infer-
ences per configuration. This approach accounts for testbed variability and gathers a
sufficient sample size for metrics with a slower sampling rate compared to the individual
inference duration, primarily because of physical constraints like power meters. For
example, evaluating the 917 valid configurations of the VGG16 network requires 917,000
inferences, which requires substantial processing resources and time. This underscores
both the complexity and the computational expense involved in the optimization challenge
addressed by DynaSplit. The ability to efficiently explore the configuration space thus
substantially diminishes both the computational burden and the duration required for
optimization.

5.4 Online Phase

During the Online Phase, the DynaSplit Controller plays a crucial role by handling
the user’s request, which includes both the inference task, like classification of an array
of images, and the desired quality of service (QoS) level, defined by the maximum
acceptable inference latency in milliseconds. The determination of QoS levels can arise
from various sources such as service-level agreements (SLAs), application types (for
example, distinguishing between time-sensitive and non-time-sensitive applications), or
the nature of the mobile network connection being used (for instance, LTE, 4G, or 5G).
Upon receiving the request, the DynaSplit Controller undertakes three vital operations,
which are as follows:

1. Identify a configuration that is not only energy efficient, but also capable of satisfying
the specified QoS requirement.

2. Apply this configuration by adjusting software and hardware settings across both
edge and cloud infrastructures.

41

5. DYNASPLIT: Methodology and Solution Approach

3. Execute the inference by effectively scheduling the requested task to ensure successful
execution.

5.4.1 Selecting Configuration

The DynaSplit Controller leverages non-dominated configurations discovered in the
Offline Phase to choose the optimal setup for a new request. Upon receiving an inference
request, the user must specify a QoS requirement, usually denoting the highest permissible
inference time, or latency. At system initialization, these non-dominated configurations
are sorted and stored in memory based on two criteria:

1. Sorted by energy consumption in ascending order (lower is preferred).

2. Sorted by accuracy in descending order (higher is preferred).

Algorithm 5.1 Procedure for Scheduling and Configuring Requests [MTIB24].
Require: qos, the QoS level expressed as maximum inference latency (ms)
Require: sortedConfigSet, the sorted non-dominated configuration set

1: config ← sortedConfigSet[0]
2: for i← 0, size(sortedConfigSet) do
3: if sortedConfigSet[i].latency ≤ qos then
4: return sortedConfigSet[i]
5: end if
6: if sortedConfigSet[i].latency < config.latency then
7: config ← sortedConfigSet[i]
8: end if
9: end for

10: return config

In Algorithm 5.1, we present the pseudo-code for our configuration selection approach.
The process starts by picking the first configuration in the ordered set (line 1), indicating
the one with the highest energy efficiency due to the sorting. Subsequently, the search
proceeds to identify the most energy-efficient configuration that meets the necessary
QoS threshold; specifically, a configuration whose inference duration does not exceed the
QoS requirement. This configuration is chosen if it is discovered (lines 2 - 4). If not,
DynaSplit advances by seeking the fastest configuration on hand, even if it exceeds the
QoS requirement (lines 6 - 10). This guarantees that the system optimizes performance
and minimizes possible quality of service violations. This strategy allows DynaSplit to
rapidly make decisions, which is vital for applications with low latency demands, such
as autonomous vehicle control and real-time video processing. The algorithm’s runtime
complexity is O(n), with n being the count of non-dominated configurations within the
sorted set. In the scenario with the highest computational demand, the algorithm might

42

5.4. Online Phase

need to review each configuration individually to find an appropriate match for each
request.

Using the Pareto front derived in the Offline Phase, DynaSplit can efficiently execute
decisions during runtime, providing solutions that are almost optimal in practical en-
vironments. This dual-phase strategy guarantees scalability across various models and
hardware configurations, adapting dynamically to diverse workloads.

5.4.2 Applying Configuration

Adjusting the configuration according to the chosen configuration requires modifications
at both the edge and the cloud node. At the edge node, the DynaSplit Controller
initially modifies the CPU and TPU frequencies to align with the settings chosen. In
particular, when TPUf = off , the edge hardware accelerator is bypassed; the TPU is
fully deactivated to prevent unnecessary power consumption. Additionally, if the head
network has not been utilized before, it is loaded.

If config.Lnetwork ̸= L, which implies that the inference task requires cloud processing,
DynaSplit Controller sends a startup message to the cloud node, specifying which tail
network to load and whether to use the GPU for cloud speedup. With respect to both
edge and cloud nodes, if needed, five preliminary inference runs are conducted.

5.4.3 Executing Inference

At this point, the inference task can be coordinated. Initially, the head network handles
the user’s data, leading to the generation of intermediate output. These outputs are then
transmitted to the cloud node, where the tail network takes over, processes them further,
and returns the finalized results back to the edge node. Ultimately, these inference
outcomes are delivered to the user who made the request, thus concluding the request
cycle.

To conclude, DynaSplit utilizes a strong approach to address the complex issue of
multi-objective optimization. It harnesses NSGA-III for approximating the Pareto front
and identifies the optimal configuration based on user-defined latency needs. This process
guarantees maximum performance and energy efficiency in edge-cloud infrastructures.

43

CHAPTER 6
Implementation

DynaSplit has been developed with Python 3.9 running on an edge device, while on
the cloud server, Python 3.11 is utilized for its execution.

In order to realize the process of multiobjective optimization, the DynaSplit Solver , uti-
lizes Optuna [ASY+19], which is an open-source framework capable of efficiently exploring
predefined parameter spaces with capabilities suited to tackle multi-objective optimization
problems (MOOPs). The optimization workflow integrates the NSGAIIISampler1, which
executes the NSGA-III algorithm while applying default parameter settings, along with
Optuna’s results database for effective data management. Furthermore, our empirical
analysis involves the use of the GridSampler2, enabling a near-exhaustive evaluation of
the search space. Optuna’s robust functionality allows us to target reductions in latency,
optimize energy consumption, and achieve high accuracy concurrently, leveraging a con-
figuration space we have previously defined. Through the integration of Optuna’s tools,
we are able to methodically investigate a variety of possible configurations, ensuring that
multiple objectives are simultaneously addressed, thus boosting the overall performance
and efficiency of our edge-cloud prototype.

Communication between edge and cloud nodes utilizes gRPC3 with the type of bidi-
rectional streaming. Initially, we employed synchronous unary-unary calls for this data
exchange. However, this approach fell short of capturing precise power usage data during
the brief phases of partial inference because the power meters’ sampling rates were insuf-
ficient. To counteract this issue, we explored making 1,000 asynchronous unary-unary
calls to mimic single requests while allowing us to complete all head inferences first.
Subsequently, we aim to send 1,000 intermediate results to the cloud before executing all

1https://optuna.readthedocs.io/en/latest/reference/samplers/generated/
optuna.samplers.NSGAIIISampler.html

2https://optuna.readthedocs.io/en/latest/reference/samplers/generated/
optuna.samplers.GridSampler.html

3https://grpc.io/

45

https://optuna.readthedocs.io/en/latest/reference/samplers/generated/optuna.samplers.NSGAIIISampler.html
https://optuna.readthedocs.io/en/latest/reference/samplers/generated/optuna.samplers.NSGAIIISampler.html
https://optuna.readthedocs.io/en/latest/reference/samplers/generated/optuna.samplers.GridSampler.html
https://optuna.readthedocs.io/en/latest/reference/samplers/generated/optuna.samplers.GridSampler.html
https://grpc.io/

6. Implementation

tail inferences. This approach would extend the duration of the cumulative head or tail
inferences, enabling the power meters to collect sufficient samples during the respective
inference periods. Unfortunately, this strategy quickly led to memory depletion on the
Raspberry Pi, as it was overwhelmed by the numerous concurrent calls. This limitation
arises from gRPC’s mechanism, which stores full request data for each open request in
memory. To address this shortcoming, we transitioned to bidirectional streaming, which
dispatches metadata just once at the start of the stream instead of with every single
request and is able to free memory during the streaming of data. Although this method
does not perfectly replicate real-world scenarios, it allows us to transmit data efficiently
in a continuous stream, minimizing memory usage by progressively clearing intermediate
outputs. This feature is essential given the resource constraints on the edge node.

Our prototype is compatible with two neural networks that have been pre-trained using the
ImageNet [RDS+15] dataset: VGG16 [SZ15] and the Vision Transformer (ViT) [DBK+21].
VGG16 is executed through the Keras applications available in TensorFlow. In contrast,
ViT is operational via a different Keras-based implementation4.

For executing edge inference via the edge hardware accelerator, in our case the Google
Coral USB accelerator5, the head sections of the VGG16 network are converted to 8 bit
integer format and tailored for the TPU through LiteRT6, previously known as Tensorflow
Lite. This conversion, or quantization, was performed using a representative selection
of 100 random images drawn from the ImageNet validation dataset. After that, the
quantized head models have to be compiled to run on specific hardware7. The entire
process is depicted in Figure 6.1.

Given memory limitations, ViT cannot execute on the edge TPU and must instead utilize
conventional 32-bit floating point operations executed on the CPU. Furthermore, convert-
ing the head partitions of the Vision Transformer network into Tensorflow Lite formats
was essential. Moreover, to maintain a consistent software configuration irrespective of
the given edge processing unit, the non-quantized head networks that are executed on
the edge CPU underwent conversion to Tensorflow Lite as well. When working with ViT,
it was necessary to approximate the iGELU activation function because TensorFlow Lite
does not provide native support for it [RMEZ23].

Inference is conducted on the cloud node within a Docker container configured for GPU
usage, using TensorFlow8, and additional libraries:

• grpcio==1.66.1

• pandas==2.2.2

• psutil==6.0.0
4https://github.com/faustomorales/vit-keras/tree/master/vit_keras
5https://coral.ai/products/accelerator
6https://ai.google.dev/edge/litert
7https://coral.ai/docs/edgetpu/compiler
8tensorflow/tensorflow:2.15.0-gpu

46

https://github.com/faustomorales/vit-keras/tree/master/vit_keras
https://coral.ai/products/accelerator
https://ai.google.dev/edge/litert
https://coral.ai/docs/edgetpu/compiler

Figure 6.1: The fundamental procedure for developing a model intended for deployment
on the edge TPU [Goo24].

• nvidia-ml-py==12.560.30

• scikit-learn==1.5.1

The software stack operating on the edge device comprises the following components:

• tensorflow==2.15.0

• grpcio==1.66.1

• tensorflow-datasets==4.9.3

• psutil==6.0.0

In addition, we used a separate Raspberry Pi to operate the DynaSplit Controller .
This auxiliary node used the following stack of software:

• optuna==4.0.0

• scikit-learn==1.5.2

• pymeas==0.2.0

• paramiko==3.4.1

• pandas==2.2.2

• psutil==6.0.0

47

CHAPTER 7
Evaluation

We perform an empirical assessment of DynaSplit through a combination of scala-
bility simulations and practical experiments on a real-world edge-cloud setup. In the
following sections, we detail the configuration of the experiments (section 7.1), outline
our experimental methodology (section 7.2), and present the empirical findings of our
practical experiments (section 7.3), where we will also conduct an ablation study to
check the effect of the explored fraction of the search space of the DynaSplit Solver
during the Offline Phase (subsection 7.3.4). Then we will also inspect the results of
the scalability simulation (section 7.4). We finish with an overhead analysis of our
DynaSplit Controller (section 7.5).

7.1 Experimental Setup

A realistic edge-cloud testbed is established using an edge node located within the High
Performance Computing (HPC) research group’s laboratory, combined with a cloud node
that is part of the Grid5000 computing infrastructure1.

In Figure 7.1, the setup utilized for our empirical analysis is displayed; a schematic
representation is shown on the left side, while the actual laboratory setup is illustrated
on the right.

7.1.1 Edge Node

In the HPC laboratory, the edge node operates using a Raspberry Pi 4 Model B Rev 1.4,
featuring Raspberry Pi OS 64-bit, 8 GiB RAM and a quad-core ARMv8 processor. To
minimize energy usage, we deactivate non-essential features such as Wi-Fi, Bluetooth,
and both the power and activity LEDs. Normally, the CPU frequency adapts dynamically

1https://www.grid5000.fr/w/Grid5000:Home

49

https://www.grid5000.fr/w/Grid5000:Home

7. Evaluation

Coral USB
Accelerator

Edge Node
Raspberry Pi 4

Model B Rev 1.4

Digital Power Meter
GW Instek GPM-8213

Digital Power Meter
GW Instek GPM-8213

Edge Node
Raspberry Pi 4

Model B Rev 1.4

This image has been designed using images from Flaticon.com

Helper Node
Raspberry Pi 3

Model B+ Rev 1.3

Coral USB Accelerator

Helper Node
Raspberry Pi 3

Model B+ Rev 1.3

TPU

Cloud Node
Grid5000

Digital Power Meter
Omegawa�

gRPC

SSH

Telnet

Power Cable

USB Cable

Power Cable

HTTP GET

Cloud Node
Grid5000

Digital Power Meter
Omegawa�

gRPC

Power Cable

HTTP GET

Figure 7.1: Symbolic and actual depiction of the testbed used in out experi-
ments [MTIB24].

from 600 MHz to 1.5 GHz, with cooling measures activated if the CPU temperature
surpasses 85°C2. However, we configure the CPU to use the userspace frequency
governor, eliminating dynamic adjustments and granting us control to assign specific
frequencies ranging from 0.6 GHz to 1.8 GHz with increments of 0.2 GHz. Using fixed
static frequencies is crucial to addressing our optimization challenge, as it provides a
stable and uniform frequency parameter necessary for the hardware-software codesign
approach. This method allows us to adjust hardware settings in harmony with software
improvements, yielding more beneficial compromises between energy efficiency and
computational performance. Furthermore, the edge node features a Google Coral USB
Accelerator3 with a 4 TOPS int8 tensor processing unit (TPU) coprocessor. When
operated with the libedgetpu1-std package, the TPU’s clock speed is set to 250 MHz,
and it can reach 500 MHz using the libedgetpu1-max package. The USB port is
disabled when the TPU is not needed in a given configuration, avoiding unnecessary
power consumption. We evaluate the active power consumption of the edge node using a

2https://www.raspberrypi.com/documentation/computers/config_txt.html#
monitoring-core-temperature

3https://coral.ai/products/accelerator

50

https://www.raspberrypi.com/documentation/computers/config_txt.html#monitoring-core-temperature
https://www.raspberrypi.com/documentation/computers/config_txt.html#monitoring-core-temperature
https://coral.ai/products/accelerator

7.2. Experimental Plan

GW Instek GPM-8213 Digital Power Meter4, which offers a sampling rate of 200 ms and
a resolution of 1 mW. We then calculate energy usage through trapezoidal integration5

of the recorded power metrics.

7.1.2 Cloud Node

The cloud node, part of the Grid5000 cluster, is located in Lyon, France, while the edge
node is located in the laboratory of the HPC research group in Vienna. It is equipped
with dual Intel Xeon E5-2698 v4 processors, 512 GiB of RAM, and is equipped with 8
NVIDIA Tesla V100 GPUs. However, in our experiments, we use only one GPU. This
node was chosen because it has a physical Omegawatt wattmeter6 connected to it, that
records power consumption every 20 ms with an accuracy of 0.1 watt. The capability of
directly monitoring power usage at the node level makes this node ideal for our edge-cloud
testbed.

7.1.3 Helper Node

In our experiment, a third node is deployed to manage the execution of the DynaSplit
components, specifically the DynaSplit Solver and the DynaSplit Controller . This
node is configured using a Raspberry Pi 3 Model B+ Rev 1.3, which operates on Raspberry
Pi OS 64-bit and includes 1 GiB of RAM along with a quad-core ARMv8 processor.

7.2 Experimental Plan

We perform two distinct experiments, referred to as the Testbed Experiment and the
Simulation Experiment. Both experiments employ identical evaluation metrics, which are
described in subsection 7.2.2, to assess and contrast DynaSplit against four baselines
methods detailed in subsection 7.2.3.

Specifically, the Testbed Experiment evaluates DynaSplit in a practical setting by using
our edge-cloud testbed to manage a workload comprising 50 user requests per network, as
detailed in subsection 7.2.1. During this experiment, we perform an ablation study on the
effectiveness of only exploring 20% of the search space in the Offline Phase. We do this
by examining DynaSplit’s efficiency when using non-dominated configurations derived
from exploring 20% of the search space via our DynaSplit Solver , against the non-
dominated configurations obtained from a more extensive search covering approximately
80% of the configuration space.

In contrast, the Simulation Experiment is designed to evaluate DynaSplit’s performance
under an increased volume of user requests. Specifically, this involves simulating up to
10,000 user requests using the evaluation metrics derived from previous examinations

4https://www.gwinstek.com/en-global/products/detail/GPM-8213
5https://scikit-learn.org/dev/modules/generated/sklearn.metrics.auc.html
6https://www.grid5000.fr/w/Lyon:Wattmetre

51

https://www.gwinstek.com/en-global/products/detail/GPM-8213
https://scikit-learn.org/dev/modules/generated/sklearn.metrics.auc.html
https://www.grid5000.fr/w/Lyon:Wattmetre

7. Evaluation

conducted during the search space exploration and the Testbed Experiment. We ensured
that every configuration incorporated in the simulation went through a minimum of five
evaluations on the testbed. Then these configurations were randomly sampled from the
pool of recorded observations corresponding to the specified configurations.

Furthermore, we perform an evaluation to examine the impact of execution time associated
with the DynaSplit Controller , as detailed in section 7.5.

7.2.1 Workload Generation

We produce a total of 50 requests for the Testbed Experiment and a considerable 10,000
requests for the Simulation Experiments. Each request simulates a user that needs to
perform an image classification inference task involving 1,000 images taken from the
ImageNet [RDS+15] validation dataset.

Table 7.1: Illustration of observed minimum and maximum latency limits for VGG16
and ViT architectures, with their respective configuration [MTIB24].

Min. Latency Max. Latency
Value Configuration Value Configuration

VGG16 90.6 ms

CPU Freq.: 1.2 GHz
TPU: No
GPU: Yes
Split Layer: 0

5,026.8 ms

CPU Freq.: 0.6 GHz
TPU: No
GPU: No
Split Layer: 20

ViT 118.8 ms

CPU Freq.: 1.4 GHz
TPU: No
GPU: Yes
Split Layer: 0

10,287.6 ms

CPU Freq.: 0.6 GHz
TPU: No
GPU: No
Split Layer: 18

To allocate a quality of service (QoS) level to each request, we apply the Weibull
distribution, setting its shape parameter to 1, thus transforming it into an exponential
distribution. This approach effectively models real-world latency patterns [APMW19].
For each neural network, we draw samples from this distribution, subsequently scaling
these samples so that the smallest aligns with the minimum observed latency of the
network and the largest corresponds to the maximum observed latency, as seen in
Table 7.1. Additionally, Figure 7.2 showcases the distribution of latency values generated
for the two networks.

7.2.2 Evaluation Metrics

We perform an assessment of DynaSplit with respect to four key metrics, which include
latency, the level of QoS violations, the energy consumption, and the accuracy of inference
results.

52

7.2. Experimental Plan

2500 5000 7500 10000
Latency (ms)

0

2

4

6

D
en

si
ty

×10
4

VGG16
ViT

Figure 7.2: Distribution of requests throughout inference duration, specifically for the
VGG16 and ViT network architectures [MTIB24].

Latency

We assess latency, expressed in milliseconds, employing Python’s time.perf_counter_ns
function. The overall latency is calculated by summing the following components:

• Edge Latency encompasses processes such as image scaling, batch formation, execu-
tion of neural network inference, and decoding of the final output.

• Cloud Latency involves steps such as the deserialization of intermediary outputs,
invoking the tail model, and decoding the final output.

• Network Latency represents the residual duration after deducting the edge and
cloud latencies, specifically attributing to data transmission time.

QoS Violations

We assess QoS violations by counting the number of requests whose latency exceeds the
established quality of service limit and then measure the extent of non-compliance in
terms of milliseconds.

Energy Consumption

We separately monitor energy usage in Joules for both edge and cloud processing. For
consistent measurement, we batch 1,000 inferences per user inquiry. The edge executes
1,000 initial inferences, after which the results are forwarded to the cloud, which then
handles 1,000 concluding inferences. By lengthening the inference period, this approach
ensures trustworthy power measurements, surpassing the constraints posed by the power
meter’s sampling frequency, 200 ms on the edge node and 20 ms on the cloud node.

53

7. Evaluation

Accuracy

The measurement is determined by dividing the number of images accurately categorized
by the complete count of images. It is important to mention that every user request
comprises 1,000 inferences. The metric used to evaluate each request is obtained by
averaging the outcomes across these 1,000 inferences.

7.2.3 Baseline Methods

This study focuses on assessing DynaSplit’s ability to dynamically select configurations
by benchmarking it against four baselines described as follows:

1. Cloud-Only (cloud): In this setup, all inference tasks are executed on the cloud
node using the GPU, with the edge CPU operating at its highest frequency.

2. Edge-Only (edge): Here, all inference tasks are handled by the edge node, employing
the TPU at its maximum frequency, or switching it off if unused (as in ViT
scenarios), while running the edge CPU at its maximum frequency.

3. Fastest (latency): This baseline represents the configuration with the lowest latency,
chosen from among the non-dominated configurations identified during the Offline
Phase.

4. Energy-Saving (energy): This configuration is the most energy efficient, extracted
from the non-dominated configurations found in the Offline Phase.

7.3 Testbed Experiment Results
In Table 7.2, we can see the Pareto front that was obtained during the Offline Phase for
the VGG16 network. We observe that the set of optimal configurations includes all types
of solutions, cloud, split, and edge. We can also see that the difference in energy usage is
high when the cloud node is involved in the computation. The last two configurations are
effectively never chosen during the Online Phase since we scheduled based on expected
latency.

In Table 7.3, the Pareto front for the Vision Transformer network is illustrated. Unlike
in the VGG16 configurations, we do not utilize the edge TPU due to memory constraints.
Consequently, quantized head models are not needed, leading to consistent accuracy
across all configurations. This is why the accuracy metrics are omitted from the table.
Furthermore, unlike VGG16, no edge configuration was identified during the Offline Phase
of the DynaSplit Solver . Here, we can see that the differences in energy consumption
are also more nuanced, which is a result of not having edge-only configurations.

Figure 7.3 illustrates the DynaSplit Controller ’s scheduling choices for each neural
network. The selected configurations are classified according to the split layer into
cloud-only, edge-only, or split execution. In the case of VGG16, the schedule includes 37

54

7.3. Testbed Experiment Results

Objectives Configuration Type
Lat. (ms) Eng. (J) Acc. CPU (MHz) TPU GPU Layer

1 442.42 2.17 0.603 800 std No 22 edge
2 428.54 2.25 0.603 1200 max No 22 edge
3 489.37 60.89 0.607 1400 std No 21 split
4 120.88 61.58 0.609 1600 max Yes 17 split
5 115.18 61.83 0.611 1400 std Yes 15 split
6 112.96 64.15 0.608 1400 std Yes 14 split
7 110.98 64.86 0.608 1600 std Yes 14 split
8 90.59 64.99 0.605 1200 off Yes 0 cloud
9 109.69 65.16 0.609 1200 std Yes 10 split

10 112.01 65.80 0.611 1400 max Yes 15 split

Table 7.2: The Pareto front obtained with the DynaSplit Solver for VGG16, already
sorted according to DynaSplit’s rules.

Objectives Configuration Type
Lat. (ms) Eng. (J) CPU (MHz) TPU GPU Layer

1 4371.71 81.35 1600 off Yes 16 split
2 3994.43 83.79 1800 off No 17 split
3 3300.06 85.60 1200 off Yes 11 split
4 2059.02 85.85 1800 off Yes 10 split
5 1433.70 87.68 800 off Yes 8 split
6 1111.61 88.10 1800 off Yes 7 split
7 933.59 88.31 1400 off Yes 6 split
8 213.86 89.22 1200 off Yes 4 split
9 187.49 91.32 600 off Yes 3 split

10 145.25 91.43 1400 off Yes 4 split
11 139.06 92.10 1400 off Yes 3 split
12 118.80 93.55 1400 off Yes 0 cloud

Table 7.3: The Pareto front achieved through the DynaSplit Solver for ViT, sorted
following DynaSplit’s criteria.

requests for edge computing, just two for cloud computing, and 11 for split execution.
In contrast, for ViT, just a single request is allocated for cloud execution, while the
remaining 49 requests are scheduled for split execution. Importantly, the absence of
edge computing for ViT stems from the DynaSplit Solver ’s inability to pinpoint any
edge-exclusive setups during the Offline Phase. The frequent reliance of VGG16 on edge
computing is attributed to its compatibility with the edge accelerator, in contrast to ViT.

55

7. Evaluation

cloud split edge
0

10

20

30

40

50

of

 R
eq

ue
st

s

VGG16
ViT

Figure 7.3: This image depicts the scheduling choices executed by DynaSplit [MTIB24].

cloud
edge

latency
energy

DynaSplit

Method

100

200

300

400

500

La
te

nc
y

(m
s)

(a) VGG16

cloud
edge

latency
energy

DynaSplit

Method

0

1000

2000

3000

4000

5000
La

te
nc

y
(m

s)

(b) ViT

Figure 7.4: Illustration of latency distributions for the VGG16 and ViT architec-
tures [MTIB24].

7.3.1 Latency & QoS Violations

In Figure 7.4, the latency distributions for 50 requests are evaluated for four static
baselines: cloud, edge, latency, and energy, along with DynaSplit. Within our study’s
violin plots, quartiles are denoted by horizontal lines, and the violin’s form illustrates
the distribution density. Regarding the VGG16 model, the cloud and latency baselines
capture medians of 96 ms and 97 ms, respectively, while the edge and energy baselines
yield medians of 425 ms and 434 ms, respectively. For the ViT model, the cloud and

56

7.3. Testbed Experiment Results

latency medians are 117 ms, whereas edge and energy baselines show more pronounced
latencies of 3,926 ms and 4,400 ms, respectively. The DynaSplit method dynamically
adjusts latency, striking a balance predominantly near the edge baseline for VGG16 and
close to 2,000 ms for ViT. Significantly, for the ViT model, DynaSplit offers a nuanced
range of latencies that smoothly transitions between edge and cloud baselines, a contrast
to the more stepwise adjustments as with VGG16.

cloud
edge

latency
energy

DynaSplit

Method

0

50

100

150

200

250

300

350

Q
oS

 V
io

la
tio

n
(m

s)

n=1

n=12

n=2

n=13

n=2

(a) VGG16

cloud
edge

latency
energy

DynaSplit

Method

0

1000

2000

3000

4000

Q
oS

 V
io

la
tio

n
(m

s)

n=1

n=43

n=0 n=45

n=9

(b) ViT

Figure 7.5: Illustration depicting the QoS violation patterns exhibited by VGG16 and
ViT models [MTIB24]. The variable n represents the total count of violations.

In Figure 7.5, the QoS violation distributions are depicted. Each violin plot reveals the
degree to which the requests that failed to meet their quality of service deadlines exceeded
the specified time threshold. Both networks exhibit similar patterns. For the cloud and
latency baselines, the QoS levels were violated at most twice with very minor exceedance:
less than 20 milliseconds for VGG16 and less than 27 milliseconds for ViT. In contrast,
the edge and energy baselines showed more significant violations. Approximately 25%
of the requests in VGG16, and as much as 90% in ViT, exceeded their deadlines, the
median exceedance reaching 120 milliseconds for VGG16 and about 3,000 milliseconds
for ViT. The DynaSplit approach produced violations in 4% of requests for VGG16
and 18% for Vision Transformer, with median exceedances of around 10 milliseconds for
VGG16 and 1,000 milliseconds for ViT.

7.3.2 Energy Consumption

In Figure 7.6, energy consumption is depicted. The cloud and latency baselines con-
sistently show higher energy usage compared to other baselines and DynaSplit, with
median values reaching 68 J for VGG16 and exceeding 90 J for Vision Transformer. In

57

7. Evaluation

contrast, for VGG16, both the edge and energy baselines maintain a median energy usage
below 3 J. Regarding ViT, the median energy usage for the edge baseline is 16 J, while
the energy baseline, being a split configuration (i.e., the most energy-efficient among
the non-dominated configurations), records a median of 80 J. This is again due to the
fact that the DynaSplit Solver did not explore any edge configurations during the
Offline Phase. DynaSplit showcases adaptive capabilities, achieving a median energy
consumption for VGG16 that aligns with the edge and energy baselines at under 3 J,
although it can peak at 72 J. In the case of ViT, DynaSplit aligns more closely with
the cloud, energy, and latency baselines, displaying a median energy consumption of 89 J.

cloud
edge

latency
energy

DynaSplit

Method

0

10

20

30

40

50

60

70

En
er

gy
 (J

)

(a) VGG16

cloud
edge

latency
energy

DynaSplit

Method

20

40

60

80

En
er

gy
 (J

)

(b) ViT

Figure 7.6: Illustration of how energy usage is distributed for the VGG16 and Vision
Transformer (ViT) networks [MTIB24].

7.3.3 Accuracy

We detected very slight differences in accuracy, less than 1%. Configurations utilizing
the cloud, which operate the entire model in 32-bit floating point without employing
quantization, show marginal benefits. Nevertheless, our method achieves strong perfor-
mance, revealing that it maintains comparable accuracy to baseline approaches without
any detrimental effects.

7.3.4 DynaSplit Search vs. ∼ 80% Search

Our DynaSplit method, which investigates 20% of the search space equal to 184 trials,
is evaluated against an exploration of the 81.5% search space, approximated to 80% for
simplicity, which involved 747 trials for the VGG16 network. In Table 7.4, we can see
the Pareto front obtained through the exhaustive exploration of the search space. We

58

7.3. Testbed Experiment Results

observe that there are now more non-dominated configurations (15) compared to our
DynaSplit approach (10). Furthermore, we notice that there are significantly more
edge-only configurations with varying edge parameters.

Objectives Configuration Type
Lat. (ms) Eng. (J) Acc. CPU (MHz) TPU GPU Layer

1 442.42 2.17 0.603 800 std No 22 edge
2 438.65 2.23 0.603 1000 std No 22 edge
3 431.01 2.24 0.603 1000 max No 22 edge
4 428.54 2.25 0.603 1200 max No 22 edge
5 426.46 2.27 0.603 1400 max No 22 edge
6 424.52 2.32 0.603 1800 max No 22 edge
7 1751.16 7.85 0.604 1800 off No 22 edge
8 127.23 59.61 0.609 800 max Yes 17 split
9 115.66 60.82 0.609 1800 max Yes 18 split

10 115.18 61.83 0.611 1400 std Yes 15 split
11 100.54 62.43 0.609 1600 max Yes 10 split
12 114.55 64.32 0.611 1400 max Yes 15 split
13 108.58 64.51 0.611 1800 max Yes 15 split
14 90.59 64.99 0.605 1200 off Yes 0 cloud
15 100.47 65.13 0.609 1800 max Yes 10 split

Table 7.4: The Pareto front discovered through an exhaustive search for VGG16, sorted
according to DynaSplit’s rules.

The empirical findings reveal that the DynaSplit Controller scheduled the same amount
of requests for computations executed solely in the cloud. For scenarios involving split
computation and computations conducted entirely at the edge, the variations were
minimal, with only one data point differing. The exhaustive version scheduled one
request more for edge-only computation and one less for split computation compared to
our DynaSplit approach.

We conducted a comprehensive analysis to understand the exploration’s influence on
evaluation metrics. As illustrated in Figure 7.7, both methodologies yielded comparable
results, showing no notable discrepancies in terms of latency, quality of service (QoS)
violations or energy usage. Observing the latency more closely (Figure 7.7a), it is evident
that each method manages most requests within the specified time limits. Although
latency readings of around 500 ms appear occasionally in the 20% exploration, which
are absent in the 80% exploration, these are exceptions and have minimal influence on
meeting deadlines. Furthermore, Figure 7.7b indicates that both approaches result in a
very low number of QoS violations (fewer than 3), where violations miss the target by a
maximum of just 20 ms. Insignificant variations are apparent in energy consumption, as
depicted in Figure 7.7c.

In summary, a modest 20% exploration of the search space suffices, as it produces

59

7. Evaluation

20% 80%
Space Exploration

100

150

200

250

300

350

400

450

500
La

te
nc

y
(m

s)

(a) Latency

20% 80%
Space Exploration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Q
oS

 V
io

la
tio

n
(m

s)

n=2 n=3

(b) QoS Violation

20% 80%
Space Exploration

0

10

20

30

40

50

60

70

En
er

gy
 (J

)

(c) Energy

Figure 7.7: Comparison of latency, QoS violations, and energy usage for VGG16 between
exploration levels of 20% and 80% [MTIB24].

performance almost equivalent to exploration of 80% of the configuration space, without
any apparent drawbacks.

7.4 Simulation Experiment Results

In Figure 7.8, the allocation of incoming requests by DynaSplit across cloud, split, and
edge computations for the VGG16 and ViT networks is depicted, considering up to 10,000
simulated requests. The proportion of requests directed towards cloud computation
is minimal, with VGG16 at 4% and ViT at 1%, reflecting the results of the Testbed
Experiment. For ViT, there is an absence of requests scheduled solely for edge computation
since the non-dominated configuration set (see Table 7.3) lacks such configurations. In
contrast, VGG16 opts for more split configurations, likely influenced by its more granular
variations of the QoS level, allowing DynaSplit Controller to exploit a broader array
of configurations. Consequently, scheduling decisions are evenly divided between split
and edge configurations, with 4857 and 4695 requests, respectively.

7.4.1 Latency & QoS Violations

In Figure 7.9, the latency distribution in VGG16 (see Figure 7.9a) and Vision Transformer
(see Figure 7.9b) is illustrated. As observed in the Testbed Experiment, the cloud and
latency baselines consistently deliver reduced latencies, with medians of 96− 97 ms for
VGG16 and 117− 118 ms for ViT, relative to the higher figures found in the edge and
energy baselines, which have medians ranging from 425−442 ms for VGG16 to 3926−4400

60

7.4. Simulation Experiment Results

cloud split edge
0

2000

4000

6000

8000

10000

of

 R
eq

ue
st

s

VGG16
ViT

Figure 7.8: Illustration of DynaSplit scheduling choices made throughout the Simulation
Experiment concerning both the VGG16 and ViT network architectures [MTIB24].

cloud
edge

latency
energy

DynaSplit

Method

100

200

300

400

500

La
te

nc
y

(m
s)

(a) VGG16

cloud
edge

latency
energy

DynaSplit

Method

0

1000

2000

3000

4000

5000

La
te

nc
y

(m
s)

(b) ViT

Figure 7.9: Depicted here is the latency distribution for both the VGG16 and ViT
network models, as measured within the context of the Simulation Experiment [MTIB24].

ms for ViT. The DynaSplit framework results in a divided latency distribution for
VGG16, spanning cloud and edge latencies, which achieves a median latency of 160 ms,
which is lower than in the Testbed Experiment, attributed to a greater allocation of split
computation requests. For ViT, DynaSplit presents a spread of latency from the edge
to the cloud baselines, showing a concentrated distribution at cloud latencies with a
median latency of 933 ms.

61

7. Evaluation

cloud
edge

latency
energy

DynaSplit

Method

0

100

200

300

400
Q

oS
 V

io
la

tio
n

(m
s)

n=114

n=5284

n=203

n=5416

n=513

(a) VGG16

cloud
edge

latency
energy

DynaSplit

Method

0

1000

2000

3000

4000

5000

Q
oS

 V
io

la
tio

n
(m

s)

n=14

n=9503

n=13

n=9679

n=1371

(b) ViT

Figure 7.10: Depicted here are the QoS violation patterns for the VGG16 and ViT
architectures as observed throughout the Simulation Experiment [MTIB24].

As seen in Figure 7.10, both the cloud and latency baselines result in minimal QoS
violations, staying within a 2% threshold for VGG16 and 0.1% for Vision Transformer,
while median exceedances reach a peak of 3 ms for VGG16 and 10 ms for ViT. In contrast,
the edge and energy baselines exhibit substantially higher violation rates, up to 54% for
VGG16 and as much as 96% for ViT, with median exceedances increasing to 202 ms
for VGG16 and 3467 ms for ViT. On the other hand, DynaSplit exhibits about 5%
violations for VGG16 and 14% for Vision Transformer, with median exceedances at 4 ms
for VGG16 and 986 milliseconds for ViT. These findings are in line with the results of
the Testbed Experiment.

7.4.2 Energy Consumption

Referring to Figure 7.11, it is shown that energy consumption is consistently elevated
for the cloud and latency baselines, with median values of 69 J for VGG16 and 91 J for
Vision Transformer. In contrast, the edge and energy baselines demonstrate significantly
lower energy usage for VGG16, marked by a median of 2 J. For ViT, the absence of an
edge configuration found by the DynaSplit Solver during the offline phase results in
the energy baseline showing a higher median of 81 J, as opposed to the edge baseline’s
median of 17 J. When examining the DynaSplit methodology for VGG16, there is a
concentration of data at cloud and edge-comparable energy levels, with a median energy
use of 62 J, greater compared to the Testbed Experiment due to increased scheduling of split
decisions. In the case of ViT, DynaSplit demonstrates cloud-level energy consumption,
reflected by a median of 89 J, consistently indicating lower energy consumption, in

62

7.5. Overhead Analysis

cloud
edge

latency
energy

DynaSplit

Method

0

10

20

30

40

50

60

70

En
er

gy
 (J

)

(a) VGG16

cloud
edge

latency
energy

DynaSplit

Method

20

40

60

80

En
er

gy
 (J

)

(b) ViT

Figure 7.11: Distribution of energy usage for both VGG16 and ViT networks is shown
during the Simulation Experiment [MTIB24].

accordance with results from the Testbed Experiment.

7.4.3 Accuracy

In both the Testbed Experiment and the Simulation Experiment, we found that the differ-
ences in accuracy were minimal, not exceeding 1%. Moreover, DynaSplit demonstrates
performance that is at least on par with edge computation. It sustains an accuracy level
similar to the baseline models without noticeable degradation.

7.5 Overhead Analysis

In our assessment of the run-time overhead associated with the DynaSplit Controller ,
we focused on evaluating latency caused by its operational activities and the impact on
memory consumption. These measurements were gathered during the execution of the
Testbed Experiment.

Upon startup, the DynaSplit Controller executes a one-time loading and sorting of
the non-dominated configuration set. Our measurements show that the median time for
this process is about 4.2 seconds, with memory consumption reaching a peak of 20 MB.
In contrast, when loading the non-dominated configuration set derived from exploring
approximately 80% of the VGG16 search space, the operation consumed 29 seconds and
used 70 MB of memory.

63

7. Evaluation

VGG16 ViT

4

6

8

10

12

14
D

ur
at

io
n

(m
s)

(a) Selecting Configuration

VGG16 ViT
100

200

300

400

500

D
ur

at
io

n
(m

s)

(b) Applying Configuration

Figure 7.12: Illustration of the DynaSplit Controller ’s overhead concerning both the
selection and implementation of configurations for the VGG16 and ViT models [MTIB24].

Once the initial setup is complete, the DynaSplit Controller ’s primary responsibility is
to identify the optimal configuration for each incoming request. Figure 7.12a illustrates
that this process can take up to 12 ms. For VGG16, the median duration is under 5 ms,
whereas for Vision Transformer, it is 10 ms. The duration is largely dependent on the
number of non-dominated configurations available, with our examples having 15 for
VGG16 and 12 for ViT (see Table 7.2 and Table 7.3), respectively.

The operation that requires the most time is the implementation of the chosen configura-
tion, illustrated in Figure 7.12b. Typically, this process is completed in under 200 ms.
However, there are occasional deviations, where it can reach 500 ms. Despite these
anomalies, the median duration observed for both networks remains below 150 ms.

We evaluate the impact on inference time by comparing the typical overhead duration
with the typical edge latencies. For the VGG16 model, which has a median edge latency
of 426 ms, choosing the configuration adds an additional 0.96% to the latency, while
implementing the configuration results in a 32.14% increase in latency. In the case
of the Vision Transformer model, with a 3,922 ms median edge latency, selecting the
configuration increases the latency by 0.23%, while applying the configuration causes a
2.95% increase in latency.

The findings indicate that choosing the configuration incurs only a slight additional cost,
whereas implementing the configuration accounts for a significant portion of the total
overhead but remains minor in relation to the entire inference duration.

64

7.6. Limitations

7.6 Limitations

Here, we examine the possible limitations of our methodology, emphasizing the specific
conditions that might influence our results in practical applications. These factors provide
context for our findings and indicate directions for future enhancements.

7.6.1 Offline Phase and Configuration Space Changes

Our strategy incorporates an offline optimization stage designed to estimate and achieve
nearly optimal settings for hardware and software configurations. However, if there are
substantial changes to the model or hardware setup, this stage needs to be revisited,
since the current optimizations may no longer suit the altered conditions. For instance,
the inclusion of a new model architecture or the utilization of different hardware elements
necessitates re-executing the optimization process to identify updated solutions. This
reliance on an offline phase can restrict flexibility and might reduce the system’s ability to
quickly adapt to new setups. In ever-changing environments where hardware or software
undergoes frequent updates, the requirement for recurring offline optimization could
potentially introduce added expenses and delays.

7.6.2 Deployment Strategy

Within our experimental framework, we assume a continuously operational cloud server,
with the model pre-loaded and warm-up inference computations pre-computed, to ensure
latency is minimized during inference. However, this set-up might not fully capture
all practical deployment scenarios. In real-world situations, serverless or containerized
cloud services may be employed, which allocate resources only when needed. These
services typically experience cold-start latency and introduce additional warm-up overhead,
consequently affecting both latency and cost. In addition, the ongoing expenses associated
with a continuously operational cloud server may be prohibitive for some applications.
Although our setup is designed to minimize these factors to maintain experimental
uniformity, future research could investigate deployment strategies that are better aligned
with environments where resources vary or costs are a concern.

7.6.3 Model Size and Edge Optimization

The selection of models for our experiments reflects their varying fit for execution on either
edge or cloud platforms, guided by their resource needs. Models with lighter demands,
such as ResNet50 and MobileNetV2, typically perform efficiently on edge devices, offering
quicker inference and lower power use. Hence, in these scenarios, split computing does
not yield notable gains, as the entire computation can be efficiently managed by the edge
device alone. In contrast, larger models such as Vision Transformer are better suited for
cloud-based execution, where the powerful GPU in the cloud can speed up processing,
although with higher energy consumption. Thus, split computing tends to provide greater
benefits for larger models that are more aligned with resource-intensive settings, while

65

7. Evaluation

for smaller, resource-efficient networks, configurations limited to edge execution are often
more advantageous.

7.6.4 Overhead of Configuration Changes and Scheduling

Altering hardware configurations, such as tweaking CPU frequencies or disabling TPUs,
implicates processing overhead. The exact time involved depends on implementation
details, possibly requiring complex changes like OS library adjustments if DVFS is not
directly applicable. Moreover, scheduling involves computational costs due to the necessity
of identifying suitable settings for every request from an available set of non-dominated
configurations. Although this overhead is minor, it can influence system efficacy and
reaction times, especially in contexts with tight latency constraints or high request traffic.
A promising strategy might involve grouping user inquiries according to request type, QoS
requirements, and user characteristics, thereby minimizing frequent configuration shifts
and easing decision-making loads. Alternatively, employing predetermined settings for
distinct request categories might reduce runtime adaptations, thereby boosting efficiency
where rapid reconfiguration presents significant challenges.

66

CHAPTER 8
Conclusions and Future Directions

This chapter summarizes the key findings and contributions of this thesis, addresses
research questions, and demonstrates the effectiveness of the DynaSplit framework. It
concludes with future research directions aimed at enhancing the framework’s capabilities
and exploring new applications.

8.1 Conclusion
This study focuses on the issue of implementing machine learning models on edge devices
that have limited resources, specifically aiming to optimize both energy efficiency and
performance. We introduce DynaSplit, a framework that uses split computing and the
co-design of hardware and software, to effectively manage the complexities of determining
appropriate split layers and hardware settings by efficiently exploring vast configuration
spaces. Our methodology employs a dual-phase strategy that incorporates offline opti-
mization followed by online scheduling, validated through experimentation on an actual
testbed deploying pre-trained neural networks. The findings reveal that DynaSplit is
capable of lowering energy usage while maintaining strict latency constraints. In detail,
empirical analysis demonstrates the effectiveness of our proposed method for scheduling
inference requests within edge-cloud systems. Through the use of split computing strate-
gies and the optimization of relevant hardware settings, we can efficiently handle both
latency and energy usage without compromising accuracy. This ensures that quality of
service (QoS) standards are met with negligible runtime overhead. The results reveal
that the DynaSplit approach can achieve a reduction in energy consumption of up to
72% compared to a purely cloud-based processing model, while consistently satisfying
approximately 90% of the predefined latency limitations for requests.

Answering the Research Questions

The research questions addressed in this thesis are as follows:

67

8. Conclusions and Future Directions

RQ1: What are the appropriate strategies for splitting DNNs used in image classification?

RQ2: How do hardware parameters influence the trade-offs between energy consumption,
accuracy, and latency in DNN inference?

RQ3: How can we jointly optimize model splitting and hardware configurations to meet
energy and latency requirements for DNN inference?

RQ1: Appropriate strategies for splitting DNNs. This question is explored in
the literature review (see section 2.4.2, section 2.5, chapter 3). The layer-wise splitting
of DNNs has been identified as an effective strategy for image classification tasks, as
evidenced by previous work such as JointDNN [EAP21], which demonstrated its positive
impact on both energy consumption and latency.

RQ2: Influence of hardware parameters on trade-offs. The preliminary study in
section 5.1 addresses this question. Our findings show that increasing CPU frequency
reduces both latency and energy consumption on edge devices, although with diminishing
returns. The use of TPU and GPU significantly lowers latency and energy consumption,
while edge TPU usage minimally affects accuracy. Additionally, the selection of the split
layer has a non-linear impact on both latency and energy consumption for edge and cloud
devices.

RQ3: Joint optimization of model splitting and hardware configurations.
This question represents the main contribution of this thesis and is addressed by the
DynaSplit framework, described in chapter 5 and evaluated in chapter 7. DynaSplit
employs a dual-phase strategy: an offline phase to explore the configuration space using
multi-objective optimization and an online phase to dynamically schedule inference
requests. This approach enables DynaSplit to balance energy consumption and latency
while adhering to the QoS requirements with negligible runtime overhead.

In summary, this thesis demonstrates that the integration of split computing with
hardware-software co-design offers a powerful solution to deploy DNN models on resource-
constrained edge devices, achieving significant improvements in energy efficiency and
performance.

8.2 Future Directions

Although DynaSplit demonstrates significant potential in optimizing split computing
for edge inference, several avenues for future research emerge from its limitations and
unexplored opportunities. These directions aim to address the constraints of the current
implementation and explore new use cases and enhancements to the framework.

68

8.2. Future Directions

8.2.1 Dynamic Optimization and Adaptability

Future work could focus on improving DynaSplit’s adaptability to changes in the
underlying configuration space. Dynamic optimization techniques could be explored
to enable real-time reconfiguration without the need for extensive offline computations.
For instance, integrating reinforcement learning or online optimization algorithms could
allow the framework to adapt to changes in hardware, software, or model architectures
dynamically, reducing the dependency on pre-computed configurations.

8.2.2 Scalability and Multi-User Environments

DynaSplit has primarily been evaluated in single-user scenarios. Expanding its appli-
cability to multi-user environments, where multiple users or applications share edge and
cloud resources, presents an exciting challenge. Investigating resource allocation strate-
gies, such as fair scheduling or priority-based scheduling, could ensure consistent QoS
delivery across users while minimizing conflicts in shared environments. This direction
could also include studying the impact of increased request traffic on system performance
and exploring load-balancing techniques for scalability.

8.2.3 Integration with Serverless Architectures

As discussed in the limitations, serverless architectures introduce unique challenges due
to cold start delays and resource allocation overheads. Future research could evaluate
DynaSplit’s efficiency in serverless deployments, incorporating mechanisms to predict
and mitigate cold starts or leveraging warm container pools to maintain low-latency
responses. Additionally, optimizing the framework to align with pay-as-you-go cloud
pricing models could further enhance its cost-effectiveness.

8.2.4 Energy Efficiency in Heterogeneous Edge Networks

Although DynaSplit demonstrates energy savings for individual inference requests,
further research could explore its application in heterogeneous edge networks with
varying hardware capabilities. For example, integrating the framework with energy-aware
routing and workload distribution mechanisms could improve overall system efficiency in
distributed deployments. This line of work could also examine the trade-offs between
energy savings and performance in resource-constrained IoT environments.

8.2.5 Broader Model Applicability and Fine-Grained Splitting

Finally, the current implementation focuses mainly on specific model architectures, such
as VGG16, ResNet50, MobileNetV2, and ViT. Future studies could extend DynaSplit
to support a wider range of models, including those with novel architectures, such as
generative models. Furthermore, fine-grained splitting techniques, where model layers
are partitioned into smaller computational units, could further enhance flexibility and
resource utilization.

69

Overview of Generative AI Tools
Used

I declare that AI tools were used only as supplementary aids in this thesis, with my
authorship prevailing. GPT-4o and TeXGPT were used exclusively to check spelling,
grammar and refining sentence structure, with my own written text as input in each
case. No content was purely generated from a prompt and copied without significant
modifications.

71

List of Figures

2.1 An example of the layered architecture of the edge-cloud continuum as shown
by [CSB19]. 10

2.2 Basic neural network concepts [Kro08]. 12
2.3 Motivational scenario for split computing: inference tasks can be executed

on the edge, in the cloud, or through a hybrid approach that splits the
computation between both [MTIB24]. 19

4.1 Energy consumption and time intervals throughout the inference process. The
timeline illustrates edge computation (Tedge), data transfer to the cloud (T 1

net),
cloud computation (Tcloud), and the return transfer to the edge (T 2

net). Edge
energy is measured across the entire duration of inference, whereas cloud
energy is only accounted for during the cloud computation phase. 30

5.1 This figure illustrates the effects of adjusting CPU frequency and modifying the
split layer on the latency experienced and energy consumed during inference
tasks when utilizing the VGG16 network. Results are derived from averaging
data collected over 1,000 inference operations [MTIB24]. 35

5.2 Influence of utilizing TPU settings, including adjustment of frequency, along-
side GPU settings on both the inference duration and energy consumption
for the VGG16 architecture [MTIB24]. 36

5.3 This visualization illustrates how adjusting the split layer and using TPU
resources can influence the accuracy outcomes for the VGG16 architec-
ture [MTIB24]. 36

5.4 This diagram offers an extensive illustration of the DynaSplit framework,
detailing its structure and components [MTIB24]. 37

6.1 The fundamental procedure for developing a model intended for deployment
on the edge TPU [Goo24]. 47

7.1 Symbolic and actual depiction of the testbed used in out experiments [MTIB24]. 50
7.2 Distribution of requests throughout inference duration, specifically for the

VGG16 and ViT network architectures [MTIB24]. 53
7.3 This image depicts the scheduling choices executed by DynaSplit [MTIB24]. 56
7.4 Illustration of latency distributions for the VGG16 and ViT architectures [MTIB24]. 56

73

7.5 Illustration depicting the QoS violation patterns exhibited by VGG16 and
ViT models [MTIB24]. The variable n represents the total count of violations. 57

7.6 Illustration of how energy usage is distributed for the VGG16 and Vision
Transformer (ViT) networks [MTIB24]. 58

7.7 Comparison of latency, QoS violations, and energy usage for VGG16 between
exploration levels of 20% and 80% [MTIB24]. 60

7.8 Illustration of DynaSplit scheduling choices made throughout the Simu-
lation Experiment concerning both the VGG16 and ViT network architec-
tures [MTIB24]. 61

7.9 Depicted here is the latency distribution for both the VGG16 and ViT
network models, as measured within the context of the Simulation Experi-
ment [MTIB24]. 61

7.10 Depicted here are the QoS violation patterns for the VGG16 and ViT archi-
tectures as observed throughout the Simulation Experiment [MTIB24]. . . 62

7.11 Distribution of energy usage for both VGG16 and ViT networks is shown
during the Simulation Experiment [MTIB24]. 63

7.12 Illustration of the DynaSplit Controller ’s overhead concerning both the
selection and implementation of configurations for the VGG16 and ViT mod-
els [MTIB24]. 64

74

List of Tables

3.1 Overview of prior work and comparison to this study analogously to [MLR23].
Metrics: A: Model accuracy, D: Transferred data size, E(*): Energy con-
sumption (of all devices), L: Latency, P: Privacy. 26

5.1 Classification and extent of various hardware and software parameters [MTIB24]. 37

7.1 Illustration of observed minimum and maximum latency limits for VGG16
and ViT architectures, with their respective configuration [MTIB24]. . . . 52

7.2 The Pareto front obtained with the DynaSplit Solver for VGG16, already
sorted according to DynaSplit’s rules. 55

7.3 The Pareto front achieved through the DynaSplit Solver for ViT, sorted
following DynaSplit’s criteria. 55

7.4 The Pareto front discovered through an exhaustive search for VGG16, sorted
according to DynaSplit’s rules. 59

75

List of Algorithms

5.1 Procedure for Scheduling and Configuring Requests [MTIB24]. 42

77

Acronyms

AI artificial intelligence. xiii, 1, 2, 6, 7, 10–15, 17, 19

AR augmented reality. 9, 10

ARM Advanced RISC Machine. 33, 49, 51

CNN convolutional neural network. 12, 21, 34, 39

CPU central processing unit. xiii, 3, 4, 14, 15, 22, 23, 28, 33–35, 37–39, 43, 46, 49, 50,
52, 54, 66, 68, 73

DAG directed acyclic graph. 22

DL deep learning. 11

DNN deep neural network. 1–5, 11, 12, 14–18, 22–24, 68

DVFS dynamic voltage and frequency scaling. 2, 4, 14, 24, 66

FLOP floating-point operation. 15

GHz gigahertz. 50, 52

GiB gibibyte. 33, 49, 51

GOPS giga operations per second. 14

GPU graphics processing unit. 2–4, 14, 15, 28, 33–36, 38, 39, 43, 51, 52, 54, 65, 68, 73

HPC High Performance Computing. 49, 51

IaaS Infrastructure as a Service. 7

ILP integer linear programming. 22

IoT Internet of Things. 2, 8–10, 17

79

J Joule. 57, 58, 62

LED light-emitting diode. 49

LTE long-term evolution. 41

MB megabyte. 63

MHz megahertz. 34, 35, 50

ML machine learning. 6, 10, 11, 13, 67

MOOP multi-objective optimization problem. 30, 38, 40, 45

ms milliseconds. 51–53, 56, 57, 59–62, 64

mW milliwatt. 51

NN neural network. xiii, 3, 11, 17, 19, 27, 28, 33, 36, 38, 39, 46, 52–54

NSGA non-dominated Sorting Genetic Algorithm. 40, 43, 45

OS operating system. 49, 51, 66

PaaS Platform as a Service. 7

QoS quality of service. xiii, 2, 3, 5, 14, 23, 28, 36, 38, 41, 42, 52, 53, 57, 59, 60, 62,
66–69, 74

RAM random-access memory. 33, 49, 51

ReLu Rectified Linear Unit. 11

RNN recurrent neural network. 12, 23

RPC remote procedure call. 45, 46

SaaS Software as a Service. 7

SLA service-level agreement. 14, 41

SNN spiking neural network. 22

TOPS tera-operations. 50

TPU tensor processing unit. 2, 4, 14, 22, 33–36, 38, 39, 43, 46, 47, 50, 52, 54, 66, 68, 73

UAV unmanned aerial vehicle. 24

USB Universal Serial Bus. 50

ViT Vision Transformer. 33, 34, 39, 46, 52–58, 60–65, 69, 73–75

80

Bibliography

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andy Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing. Commun.
ACM, 53(4):50–58, 2010.

[AGH20] Ahsan Adeel, Mandar Gogate, and Amir Hussain. Contextual deep learning-
based audio-visual switching for speech enhancement in real-world environ-
ments. Inf. Fusion, 59:163–170, 2020.

[APMW19] Muhammad Asad Arfeen, Krzysztof Pawlikowski, Don McNickle, and An-
dreas Willig. The role of the weibull distribution in modelling traffic in
internet access and backbone core networks. J. Netw. Comput. Appl., 141:1–
22, 2019.

[ARAD21] I Nyoman Gede Arya Astawa, Made Leo Radhitya, I Wayan Raka Ardana,
and Felix Andika Dwiyanto. Face images classification using VGG-CNN.
Knowl. Eng. Data Sci., 4(1):49–54, 2021.

[ASY+19] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2019.

[AZTS18] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge
computing: A survey. IEEE Internet Things J., 5(1):450–465, 2018.

[BCCN18] Simone Bianco, Rémi Cadène, Luigi Celona, and Paolo Napoletano. Bench-
mark analysis of representative deep neural network architectures. IEEE
Access, 6:64270–64277, 2018.

[BVP+21] Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang,
and Yong Zhang. Auto-split: A general framework of collaborative edge-
cloud AI. In Feida Zhu, Beng Chin Ooi, and Chunyan Miao, editors, KDD
’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, Singapore, August 14-18, 2021, pages 2543–2553.
ACM, 2021.

81

[BVS13] Rajkumar Buyya, Christian Vecchiola, and Thamarai Selvi Somasundaram.
Mastering Cloud Computing: Foundations and Application Programming.
Morgan Kaufmann, 05 2013.

[BWL20] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:
Optimal speed and accuracy of object detection. CoRR, abs/2004.10934,
2020.

[CB18] Hyomin Choi and Ivan V. Bajic. Deep feature compression for collaborative
object detection. In 2018 IEEE International Conference on Image Pro-
cessing, ICIP 2018, Athens, Greece, October 7-10, 2018, pages 3743–3747.
IEEE, 2018.

[CCB20] Robert A. Cohen, Hyomin Choi, and Ivan V. Bajic. Lightweight compression
of neural network feature tensors for collaborative intelligence. In IEEE
International Conference on Multimedia and Expo, ICME 2020, London,
UK, July 6-10, 2020, pages 1–6. IEEE, 2020.

[CJLF16] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user
computation offloading for mobile-edge cloud computing. IEEE/ACM Trans.
Netw., 24(5):2795–2808, 2016.

[CLC22] Xing Chen, Jingtao Li, and Chaitali Chakrabarti. Energy and loss-aware
selective updating for splitfed learning with energy harvesting-powered
devices. J. Signal Process. Syst., 94(10):961–975, 2022.

[CLM+21] Gilles Callebaut, Guus Leenders, Jarne Van Mulders, Geoffrey Ottoy,
Lieven De Strycker, and Liesbet Van der Perre. The art of designing remote
iot devices - technologies and strategies for a long battery life. Sensors,
21(3):913, 2021.

[CLY+24] Yang Cao, Shao-Yu Lien, Cheng-Hao Yeh, Der-Jiunn Deng, Ying-Chang
Liang, and Dusit Niyato. Learning-based multitier split computing for
efficient convergence of communication and computation. IEEE Internet
Things J., 11(20):33077–33096, 2024.

[CMGS20] Tejalal Choudhary, Vipul Kumar Mishra, Anurag Goswami, and Jagan-
nathan Sarangapani. A comprehensive survey on model compression and
acceleration. Artif. Intell. Rev., 53(7):5113–5155, 2020.

[CR19] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.
Proc. IEEE, 107(8):1655–1674, 2019.

[CSB19] Chii Chang, Satish Narayana Srirama, and Rajkumar Buyya. Internet
of things (iot) and new computing paradigms. In Rajkumar Buyya and
Satish Narayana Srirama, editors, Fog and Edge Computing, Wiley Series
on Parallel and Distributed Computing, pages 1–23. Wiley, 2019.

82

[CZ20] Shuo Cheng and Guohui Zhou. Facial expression recognition method based
on improved VGG convolutional neural network. Int. J. Pattern Recognit.
Artif. Intell., 34(7):2056003:1–2056003:16, 2020.

[DBK+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[DBMC22] Pudi Dhilleswararao, Srinivas Boppu, M. Sabarimalai Manikandan, and
Linga Reddy Cenkeramaddi. Efficient hardware architectures for accelerating
deep neural networks: Survey. IEEE Access, 10:131788–131828, 2022.

[DJ14] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective
optimization algorithm using reference-point-based nondominated sorting
approach, part I: solving problems with box constraints. IEEE Trans. Evol.
Comput., 18(4):577–601, 2014.

[DLH+20] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression
and hardware acceleration for neural networks: A comprehensive survey.
Proc. IEEE, 108(4):485–532, 2020.

[DPM+22] Aaron Yi Ding, Ella Peltonen, Tobias Meuser, Atakan Aral, Christian
Becker, Schahram Dustdar, Thomas Hiessl, Dieter Kranzlmüller, Mad-
husanka Liyanage, Setareh Maghsudi, Nitinder Mohan, Jörg Ott, Jan S.
Rellermeyer, Stefan Schulte, Henning Schulzrinne, Gürkan Solmaz, Sasu
Tarkoma, Blesson Varghese, and Lars C. Wolf. Roadmap for edge AI: a
dagstuhl perspective. Comput. Commun. Rev., 52(1):28–33, 2022.

[DRL+23] Anurag Dutt, Sri Pramodh Rachuri, Ashley Lobo, Nazeer Shaik, Anshul
Gandhi, and Zhenhua Liu. Evaluating the energy impact of device parame-
ters for DNN inference on edge. In Proceedings of the 14th International
Green and Sustainable Computing Conference, IGSC 2023, Toronto, ON,
Canada, October 28-29, 2023, pages 52–55. ACM, 2023.

[DZF+20] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dust-
dar, and Albert Y. Zomaya. Edge intelligence: The confluence of edge
computing and artificial intelligence. IEEE Internet Things J., 7(8):7457–
7469, 2020.

[EAP21] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram.
Jointdnn: An efficient training and inference engine for intelligent mobile
cloud computing services. IEEE Trans. Mob. Comput., 20(2):565–576, 2021.

83

[EEP19] Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. Bot-
tlenet: A deep learning architecture for intelligent mobile cloud computing
services. In 2019 IEEE/ACM International Symposium on Low Power
Electronics and Design, ISLPED 2019, Lausanne, Switzerland, July 29-31,
2019, pages 1–6. IEEE, 2019.

[FDHM22] Seth G. Fitzgerald, Gary W. Delaney, David Howard, and Frédéric Maire.
Evolving polydisperse soft robotic jamming grippers. In Jonathan E. Field-
send and Markus Wagner, editors, GECCO ’22: Genetic and Evolutionary
Computation Conference, Companion Volume, Boston, Massachusetts, USA,
July 9 - 13, 2022, pages 707–710. ACM, 2022.

[Fie17] Jonathan E. Fieldsend. University staff teaching allocation: formulating and
optimising a many-objective problem. In Peter A. N. Bosman, editor, Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO
2017, Berlin, Germany, July 15-19, 2017, pages 1097–1104. ACM, 2017.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning.
Adaptive computation and machine learning. MIT Press, 2016.

[GDDM14] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
In 2014 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 580–587. IEEE
Computer Society, 2014.

[GL87] Robert D. Galliers and Frank F. Land. Viewpoint: Choosing appropriate in-
formation systems research methodologies. Commun. ACM, 30(11):901–902,
11 1987.

[Goo24] Google. Tensorflow models on the edge tpu. https://coral.ai/docs/
edgetpu/models-intro/, 2024. Accessed: 2024-11-22.

[HD24] Maruf Hassan and Steven Davy. Spikebottlenet: Spike-driven feature com-
pression architecture for edge-cloud co-inference, 2024.

[HMD16] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Q., 28(1):75–105, 2004.

[HMS21] Walid A. Hanafy, Tergel Molom-Ochir, and Rohan Shenoy. Design consid-
erations for energy-efficient inference on edge devices. In Herman de Meer

84

https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/

and Michela Meo, editors, e-Energy ’21: The Twelfth ACM International
Conference on Future Energy Systems, Virtual Event, Torino, Italy, 28 June
- 2 July, 2021, pages 302–308. ACM, 2021.

[HPA+19] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler,
Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu,
Vijay Vasudevan, and Yukun Zhu. Searching for mobilenetv3. In 2019
IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, pages 1314–1324.
IEEE, 2019.

[HTR22] Hanan Hussain, P. S. Tamizharasan, and C. S. Rahul. Design possibilities
and challenges of DNN models: a review on the perspective of end devices.
Artif. Intell. Rev., 55(7):5109–5167, 2022.

[HVD15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge
in a neural network. CoRR, abs/1503.02531, 2015.

[HZC+17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 770–778. IEEE Computer Society, 2016.

[IMA+16] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size. CoRR, abs/1602.07360,
2016.

[INY21] Sohei Itahara, Takayuki Nishio, and Koji Yamamoto. Packet-loss-tolerant
split inference for delay-sensitive deep learning in lossy wireless networks.
In IEEE Global Communications Conference, GLOBECOM 2021, Madrid,
Spain, December 7-11, 2021, pages 1–6. IEEE, 2021.

[JD14] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective
optimization algorithm using reference-point based nondominated sorting
approach, part II: handling constraints and extending to an adaptive ap-
proach. IEEE Trans. Evol. Comput., 18(4):602–622, 2014.

[JJLM18] Hyuk-Jin Jeong, InChang Jeong, Hyeon-Jae Lee, and Soo-Mook Moon.
Computation offloading for machine learning web apps in the edge server

85

environment. In 38th IEEE International Conference on Distributed Comput-
ing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, pages 1492–1499.
IEEE Computer Society, 2018.

[JKC+18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew G. Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization
and training of neural networks for efficient integer-arithmetic-only inference.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 2704–2713.
Computer Vision Foundation / IEEE Computer Society, 2018.

[KC07] Barbara Ann Kitchenham and Stuart Charters. Guidelines for performing
systematic literature reviews in software engineering. Technical Report
EBSE 2007-001, Keele University and Durham University Joint Report, 07
2007.

[KG19] Taranjit Kaur and Tapan Kumar Gandhi. Automated brain image clas-
sification based on VGG-16 and transfer learning. In 2019 International
Conference on Information Technology (ICIT), Bhubaneswar, India, Decem-
ber 19-21, 2019, pages 94–98. IEEE, 2019.

[KHG+17] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor N.
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelli-
gence between the cloud and mobile edge. In Yunji Chen, Olivier Temam,
and John Carter, editors, Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, pages
615–629. ACM, 2017.

[KNH+22] Salman H. Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir,
Fahad Shahbaz Khan, and Mubarak Shah. Transformers in vision: A survey.
ACM Comput. Surv., 54(10s):200:1–200:41, 2022.

[Kro08] Anders Krogh. What are artificial neural networks? Nature biotechnology,
26(2):195–197, 2008.

[LAB23] Daniel Luger, Atakan Aral, and Ivona Brandic. Cost-aware neural network
splitting and dynamic rescheduling for edge intelligence. In Atakan Aral,
editor, Proceedings of the 6th International Workshop on Edge Systems,
Analytics and Networking, EdgeSys 2023, Rome, Italy, 8 May 2023, pages
42–47. ACM, 2023.

[LB24] Xian Li and Suzhi Bi. Optimal AI model splitting and resource allocation
for device-edge co-inference in multi-user wireless sensing systems. IEEE
Trans. Wirel. Commun., 23(9):11094–11108, 2024.

86

[LFEF24] Hao Liu, Mohammed E. Fouda, Ahmed M. Eltawil, and Suhaib A. Fahmy.
Split DNN inference for exploiting near-edge accelerators. In Rong N.
Chang, Carl K. Chang, Jingwei Yang, Zhi Jin, Michael Sheng, Jing Fan,
Kenneth Fletcher, Qiang He, Nimanthi L. Atukorala, Hongyue Wu, Shiqiang
Wang, Shuiguang Deng, Nirmit Desai, Gopal Pingali, Javid Taheri, K. V.
Subramaniam, Feras M. Awaysheh, Kaoutar El Maghaouri, and Yingjie
Wang, editors, IEEE International Conference on Edge Computing and
Communications, EDGE 2024, Shenzhen, China, July 7-13, 2024, pages
84–91. IEEE, 2024.

[LL20] Wenbin Li and Matthieu Liewig. A survey of AI accelerators for edge envi-
ronment. In Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis, Sandra Costanzo,
Irena Orovic, and Fernando Moreira, editors, Trends and Innovations in
Information Systems and Technologies - Volume 2, WorldCIST 2020, Budva,
Montenegro, 7-10 April 2020, volume 1160 of Advances in Intelligent Systems
and Computing, pages 35–44. Springer, 2020.

[LLW+18] Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao, and Xiaobing
Feng. Auto-tuning neural network quantization framework for collaborative
inference between the cloud and edge. In Vera Kurková, Yannis Manolopou-
los, Barbara Hammer, Lazaros S. Iliadis, and Ilias Maglogiannis, editors,
Artificial Neural Networks and Machine Learning - ICANN 2018 - 27th
International Conference on Artificial Neural Networks, Rhodes, Greece,
October 4-7, 2018, Proceedings, Part I, volume 11139 of Lecture Notes in
Computer Science, pages 402–411. Springer, 2018.

[LLW19] Zhongjie Lin, Hugh H. T. Liu, and Mike Wotton. Kalman filter-based
large-scale wildfire monitoring with a system of uavs. IEEE Trans. Ind.
Electron., 66(1):606–615, 2019.

[LMAS23] Ibtissam Labriji, Mattia Merluzzi, Fatima Ezzahra Airod, and Emilio Cal-
vanese Strinati. Energy-efficient cooperative inference via adaptive deep
neural network splitting at the edge. In IEEE International Conference on
Communications, ICC 2023, Rome, Italy, May 28 - June 1, 2023, pages
1712–1717. IEEE, 2023.

[LMP+21] Ivan Lujic, Vincenzo De Maio, Klaus Pollhammer, Ivan Bodrozic, Josip Lasic,
and Ivona Brandic. Increasing traffic safety with real-time edge analytics and
5g. In Aaron Yi Ding and Richard Mortier, editors, EdgeSys@EuroSys 2021:
4th International Workshop on Edge Systems, Analytics and Networking,
Online Event, United Kingdom, April 26, 2021, pages 19–24. ACM, 2021.

[LOD18] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep learning
for the internet of things with edge computing. IEEE Netw., 32(1):96–101,
2018.

87

[LVA+20] Stefanos Laskaridis, Stylianos I. Venieris, Mário Almeida, Ilias Leontiadis,
and Nicholas D. Lane. SPINN: synergistic progressive inference of neural
networks over device and cloud. In MobiCom ’20: The 26th Annual Inter-
national Conference on Mobile Computing and Networking, London, United
Kingdom, September 21-25, 2020, pages 37:1–37:15. ACM, 2020.

[LWWW24] Zuguang Li, Wen Wu, Shaohua Wu, and Wei Wang. Adaptive split learning
over energy-constrained wireless edge networks. In IEEE INFOCOM 2024
- IEEE Conference on Computer Communications Workshops, Vancouver,
BC, Canada, May 20, 2024, pages 1–6. IEEE, 2024.

[LZY+22] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. Tetris:
Memory-efficient serverless inference through tensor sharing. In 2022
USENIX Annual Technical Conference (USENIX ATC 22), Carlsbad, CA,
July 2022. USENIX Association.

[MBCM22] Javier Mendez, Kay Bierzynski, Manuel P. Cuéllar, and Diego Pedro Morales.
Edge intelligence: Concepts, architectures, applications, and future direc-
tions. ACM Trans. Embed. Comput. Syst., 21(5):48:1–48:41, 2022.

[MCB+20] Yoshitomo Matsubara, Davide Callegaro, Sabur Baidya, Marco Levorato,
and Sameer Singh. Head network distillation: Splitting distilled deep neural
networks for resource-constrained edge computing systems. IEEE Access,
8:212177–212193, 2020.

[MCS+22] Yoshitomo Matsubara, Davide Callegaro, Sameer Singh, Marco Levorato,
and Francesco Restuccia. Bottlefit: Learning compressed representations in
deep neural networks for effective and efficient split computing. In 23rd IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks, WoWMoM 2022, Belfast, United Kingdom, June 14-17, 2022,
pages 337–346. IEEE, 2022.

[MLR23] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split
computing and early exiting for deep learning applications: Survey and
research challenges. ACM Comput. Surv., 55(5):90:1–90:30, 2023.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Aarti Singh and Xiaojin (Jerry) Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA,
volume 54 of Proceedings of Machine Learning Research, pages 1273–1282.
PMLR, 2017.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5:115–133, 1943.

88

[MPCD19] Oskar Marko, Dejan Pavlovic, Vladimir S. Crnojevic, and Kalyanmoy
Deb. Optimisation of crop configuration using NSGA-III with categorical
genetic operators. In Manuel López-Ibáñez, Anne Auger, and Thomas
Stützle, editors, Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO 2019, Prague, Czech Republic, July 13-17,
2019, pages 223–224. ACM, 2019.

[MTIB24] Daniel May, Alessandro Tundo, Shashikant Ilager, and Ivona Brandic.
DynaSplit: A Hardware-Software Co-Design Framework for Energy-Aware
Inference on Edge, 2024.

[MVO+24] Akrit Mudvari, Antero Vainio, Iason Ofeidis, Sasu Tarkoma, and Leandros
Tassiulas. Adaptive compression-aware split learning and inference for
enhanced network efficiency. ACM Trans. Internet Technol., 24(4), November
2024.

[NZES05] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. Pareto multi objec-
tive optimization. In Proceedings of the 13th international conference on,
intelligent systems application to power systems, pages 84–91. IEEE, 2005.

[PCMP21] Daniele Jahier Pagliari, Roberta Chiaro, Enrico Macii, and Massimo Pon-
cino. CRIME: input-dependent collaborative inference for recurrent neural
networks. IEEE Trans. Computers, 70(10):1626–1639, 2021.

[PCT+20] Edward B Panganiban, Wen-Yaw Chung, Wei-Chieh Tai, Arnold C Pagli-
nawan, Jheng-Siang Lai, Ren-Wei Cheng, Ming-Kai Chang, and Po-Hsuan
Chang. Real-time intelligent healthcare monitoring and diagnosis system
through deep learning and segmented analysis. In Future Trends in Biomed-
ical and Health Informatics and Cybersecurity in Medical Devices: Proceed-
ings of the International Conference on Biomedical and Health Informatics,
ICBHI 2019, 17-20 April 2019, Taipei, Taiwan, pages 15–25. Springer, 2020.

[QLD+24] Danfeng Qin, Chas Leichner, Manolis Delakis, Marco Fornoni, Shixin
Luo, Fan Yang, Weijun Wang, Colby R. Banbury, Chengxi Ye, Berkin
Akin, Vaibhav Aggarwal, Tenghui Zhu, Daniele Moro, and Andrew
Howard. Mobilenetv4 - universal models for the mobile ecosystem. CoRR,
abs/2404.10518, 2024.

[RDGF16] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.
You only look once: Unified, real-time object detection. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, pages 779–788. IEEE Computer Society,
2016.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual

89

Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[RF17] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 6517–6525. IEEE
Computer Society, 2017.

[RF18] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767, 2018.

[RMEZ23] Brendan C Reidy, Mohammadreza Mohammadi, Mohammed E Elbtity, and
Ramtin Zand. Efficient deployment of transformer models on edge TPU
accelerators: A real system evaluation. In Architecture and System Support
for Transformer Models (ASSYST @ISCA 2023), 2023.

[RN20] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach
(4th Edition). Pearson, 2020.

[Sat17] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE Internet Things J., 3(5):637–646,
2016.

[SDSE20] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI.
Commun. ACM, 63(12):54–63, 2020.

[SGM19] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for deep learning in NLP. In Anna Korhonen, David R.
Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 3645–3650. Association
for Computational Linguistics, 2019.

[SGSB+15] Pablo Serrano, Andres Garcia-Saavedra, Giuseppe Bianchi, Albert Banchs,
and Arturo Azcorra. Per-frame energy consumption in 802.11 devices
and its implication on modeling and design. IEEE/ACM Transactions on
Networking, 23(4):1243–1256, 2015.

[SHZ+18] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition,

90

CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 4510–4520.
Computer Vision Foundation / IEEE Computer Society, 2018.

[SMB22] Eric Samikwa, Antonio Di Maio, and Torsten Braun. ARES: adaptive
resource-aware split learning for internet of things. Comput. Networks,
218:109380, 2022.

[SRG24] SRG Research. Cloud Market Growth Surge Continues in Q3: Growth Rate
Increases for the Fourth Consecutive Quarter, 2024. Accessed: 2024-11-22.

[SSWP21] Daniel Schwartz, Jonathan Michael Gomes Selman, Peter H. Wrege, and
Andreas Paepcke. Deployment of embedded edge-ai for wildlife monitoring
in remote regions. In M. Arif Wani, Ishwar K. Sethi, Weisong Shi, Guangzhi
Qu, Daniela Stan Raicu, and Ruoming Jin, editors, 20th IEEE International
Conference on Machine Learning and Applications, ICMLA 2021, Pasadena,
CA, USA, December 13-16, 2021, pages 1035–1042. IEEE, 2021.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[TL19] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pages 6105–
6114. PMLR, 2019.

[TL21] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster
training. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pages 10096–10106. PMLR, 2021.

[TMI+23] Alessandro Tundo, Marco Mobilio, Shashikant Ilager, Ivona Brandic, Ezio
Bartocci, and Leonardo Mariani. An energy-aware approach to design self-
adaptive ai-based applications on the edge. In 38th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2023, Luxembourg,
September 11-15, 2023, pages 281–293. IEEE, 2023.

[TWWC19] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. The impact
of GPU DVFS on the energy and performance of deep learning: an empirical
study. In Proceedings of the Tenth ACM International Conference on Future
Energy Systems, e-Energy 2019, Phoenix, AZ, USA, June 25-28, 2019, pages
315–325. ACM, 2019.

91

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5998–6008, 2017.

[WHL+20] Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan,
and Xu Chen. Edge AI - Convergence of Edge Computing and Artificial
Intelligence. Springer, 2020.

[WZWY22] Xudong Wang, Li Lyna Zhang, Yang Wang, and Mao Yang. Towards efficient
vision transformer inference: a first study of transformers on mobile devices.
In Robert LiKamWa and Urs Hengartner, editors, HotMobile ’22: The 23rd
International Workshop on Mobile Computing Systems and Applications,
Tempe, Arizona, USA, March 9 - 10, 2022, pages 1–7. ACM, 2022.

[XXW+23] Yilin Xiao, Liang Xiao, Kunpeng Wan, Helin Yang, Yi Zhang, Yi Wu, and
Yanyong Zhang. Reinforcement learning based energy-efficient collaborative
inference for mobile edge computing. IEEE Trans. Commun., 71(2):864–876,
2023.

[YHC+18] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.
Hamilton, and Jure Leskovec. Graph convolutional neural networks for
web-scale recommender systems. In Yike Guo and Faisal Farooq, editors,
Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD 2018, London, UK, August 19-23,
2018, pages 974–983. ACM, 2018.

[YHPC18] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria.
Recent trends in deep learning based natural language processing [review
article]. IEEE Comput. Intell. Mag., 13(3):55–75, 2018.

[YLH+18] Wei Yu, Fan Liang, Xiaofei He, William G. Hatcher, Chao Lu, Jie Lin, and
Xinyu Yang. A survey on the edge computing for the internet of things.
IEEE Access, 6:6900–6919, 2018.

[YLL+20] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu,
Huajie Shao, and Tarek F. Abdelzaher. Deep compressive offloading: speed-
ing up neural network inference by trading edge computation for network
latency. In Jin Nakazawa and Polly Huang, editors, SenSys ’20: The 18th
ACM Conference on Embedded Networked Sensor Systems, Virtual Event,
Japan, November 16-19, 2020, pages 476–488. ACM, 2020.

92

[YW23] Ya-Ting Yang and Hung-Yu Wei. A coalition formation approach for privacy
and energy-aware split deep learning inference in edge camera network.
IEEE Trans. Netw. Serv. Manag., 20(3):3673–3685, 2023.

[ZCX21] Letian Zhang, Lixing Chen, and Jie Xu. Autodidactic neurosurgeon: Col-
laborative deep inference for mobile edge intelligence via online learning.
In Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia,
editors, WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021, pages 3111–3123. ACM / IW3C2, 2021.

[ZLL+20] Shigeng Zhang, Yinggang Li, Xuan Liu, Song Guo, Weiping Wang, Jianxin
Wang, Bo Ding, and Di Wu. Towards real-time cooperative deep inference
over the cloud and edge end devices. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 4(2):69:1–69:24, 2020.

[ZMB+21] Daniel Zhang, Saurabh Mishra, Erik Brynjolfsson, John Etchemendy, Deep
Ganguli, Barbara J. Grosz, Terah Lyons, James Manyika, Juan Carlos
Niebles, Michael Sellitto, Yoav Shoham, Jack Clark, and C. Raymond
Perrault. The AI index 2021 annual report. CoRR, abs/2103.06312, 2021.

[ZSL+24] Chenxi Zhao, Min Sheng, Junyu Liu, Tianshu Chu, and Jiandong Li. Energy-
efficient power control for multiple-task split inference in uavs: A tiny
learning-based approach. IEEE Internet Things J., 11(12):21146–21157,
2024.

[ZWZ+23] Hongxia Zhang, Dengyue Wang, Wei Zhang, Lizhuang Tan, Godfrey Kibalya,
Peiying Zhang, and Kostromitin Konstantin Igorevich. Qos prediction in
intelligent edge computing based on feature learning. J. Cloud Comput.,
12(1):17, 2023.

[ZZL+24] Ziyang Zhang, Yang Zhao, Huan Li, Changyao Lin, and Jie Liu. DVFO:
learning-based DVFS for energy-efficient edge-cloud collaborative inference.
IEEE Trans. Mob. Comput., 23(10):9042–9059, 2024.

93

	Kurzfassung
	Abstract
	Contents
	Introduction
	Context & Motivation
	Research Problem & Objectives
	Methodological Approach
	Outline

	Background and Preliminaries
	Cloud and Edge Computing
	Artificial Intelligence
	Edge AI: Opportunities and Deployment Challenges
	Techniques for Addressing Edge AI Deployment Limitations
	Split Computing

	Related Work
	Split Computing with Bottleneck Injection
	Split Computing without Architectural Modifications
	Summary

	Definitions and Problem Formulation
	Notation
	Model Partitioning
	Configuration Space
	Latency Model
	Energy Model
	Optimization Problem

	DynaSplit: Methodology and Solution Approach
	Preliminary Observations
	System Overview
	Offline Phase
	Online Phase

	Implementation
	Evaluation
	Experimental Setup
	Experimental Plan
	Testbed Experiment Results
	Simulation Experiment Results
	Overhead Analysis
	Limitations

	Conclusions and Future Directions
	Conclusion
	Future Directions

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

