Attack Detection using Micro-architectural Traces and Machine Learning
Female avatar
Mai AL-Zu´bi

Attack Detection using Micro-architectural Traces and Machine Learning

Förderjahr 2024 / Stipendium Call #19 / Stipendien ID: 7276

In today’s interconnected digital world, ensuring the security of complex computer systems is critical. Vulnerabilities in these systems pose significant threats, leading to financial losses and compromising sensitive information. Addressing these sophisticated cyber threats is essential to creating a safer and more secure digital environment.

My research focuses on developing an automated framework to detect side-channel attacks by leveraging hardware performance counters (HPCs) and machine learning techniques. This framework monitors micro-architectural traces to identify anomalies that indicate security breaches. By analyzing HPC data, the system aims to detect attacks such as Spectre, Rowhammer, and Zombieload, ensuring resilience against these evolving threats.

A key objective of my work is to identify vulnerabilities in existing systems and mitigate risks through reliable detection mechanisms. By comprehensively evaluating detection models, I aim to select the most effective machine learning algorithms and the best-suited hardware performance counters for accurate and efficient attack detection.

To achieve these goals, I plan to define attack detection criteria, implement detection models in Python, and evaluate their performance using real-world workloads. This research contributes to the development of robust systems that protect sensitive data, prevent financial losses, and uphold trust in technology, ultimately strengthening cybersecurity in an increasingly connected world.

Uni | FH [Universität]

Technische Universität Wien

Themengebiet

Automatisierung/ machine learning

Zielgruppe

Erwachsene
,
Start-ups
,
Techniker:innen

Gesamtklassifikation

Dissertation | PhD

Technologie

Python

verwendete Open Source SW

Python
,
Linux

Lizenz

CC-BY

Projektergebnisse

Datenschutzinformation
Der datenschutzrechtliche Verantwortliche (Internet Privatstiftung Austria - Internet Foundation Austria, Österreich) würde gerne mit folgenden Diensten Ihre personenbezogenen Daten verarbeiten. Zur Personalisierung können Technologien wie Cookies, LocalStorage usw. verwendet werden. Dies ist für die Nutzung der Website nicht notwendig, ermöglicht aber eine noch engere Interaktion mit Ihnen. Falls gewünscht, können Sie Ihre Einwilligung jederzeit via unserer Datenschutzerklärung anpassen oder widerrufen.